| Step |
Hyp |
Ref |
Expression |
| 1 |
|
postcofval.q |
|- Q = ( C FuncCat D ) |
| 2 |
|
postcofval.r |
|- R = ( D FuncCat E ) |
| 3 |
|
postcofval.o |
|- .o. = ( <. R , Q >. curryF ( <. C , D >. o.F E ) ) |
| 4 |
|
postcofval.f |
|- ( ph -> F e. ( D Func E ) ) |
| 5 |
|
postcofval.c |
|- ( ph -> C e. Cat ) |
| 6 |
|
postcofval.k |
|- K = ( ( 1st ` .o. ) ` F ) |
| 7 |
2
|
fucbas |
|- ( D Func E ) = ( Base ` R ) |
| 8 |
4
|
func1st2nd |
|- ( ph -> ( 1st ` F ) ( D Func E ) ( 2nd ` F ) ) |
| 9 |
8
|
funcrcl2 |
|- ( ph -> D e. Cat ) |
| 10 |
8
|
funcrcl3 |
|- ( ph -> E e. Cat ) |
| 11 |
2 9 10
|
fuccat |
|- ( ph -> R e. Cat ) |
| 12 |
1 5 9
|
fuccat |
|- ( ph -> Q e. Cat ) |
| 13 |
2 1
|
oveq12i |
|- ( R Xc. Q ) = ( ( D FuncCat E ) Xc. ( C FuncCat D ) ) |
| 14 |
|
eqid |
|- ( C FuncCat E ) = ( C FuncCat E ) |
| 15 |
13 14 5 9 10
|
fucofunca |
|- ( ph -> ( <. C , D >. o.F E ) e. ( ( R Xc. Q ) Func ( C FuncCat E ) ) ) |
| 16 |
1
|
fucbas |
|- ( C Func D ) = ( Base ` Q ) |
| 17 |
|
eqid |
|- ( C Nat D ) = ( C Nat D ) |
| 18 |
1 17
|
fuchom |
|- ( C Nat D ) = ( Hom ` Q ) |
| 19 |
|
eqid |
|- ( Id ` R ) = ( Id ` R ) |
| 20 |
3 7 11 12 15 16 4 6 18 19
|
curf1 |
|- ( ph -> K = <. ( g e. ( C Func D ) |-> ( F ( 1st ` ( <. C , D >. o.F E ) ) g ) ) , ( g e. ( C Func D ) , h e. ( C Func D ) |-> ( a e. ( g ( C Nat D ) h ) |-> ( ( ( Id ` R ) ` F ) ( <. F , g >. ( 2nd ` ( <. C , D >. o.F E ) ) <. F , h >. ) a ) ) ) >. ) |
| 21 |
|
eqidd |
|- ( ( ph /\ g e. ( C Func D ) ) -> ( 1st ` ( <. C , D >. o.F E ) ) = ( 1st ` ( <. C , D >. o.F E ) ) ) |
| 22 |
|
simpr |
|- ( ( ph /\ g e. ( C Func D ) ) -> g e. ( C Func D ) ) |
| 23 |
4
|
adantr |
|- ( ( ph /\ g e. ( C Func D ) ) -> F e. ( D Func E ) ) |
| 24 |
21 22 23
|
fuco11b |
|- ( ( ph /\ g e. ( C Func D ) ) -> ( F ( 1st ` ( <. C , D >. o.F E ) ) g ) = ( F o.func g ) ) |
| 25 |
24
|
mpteq2dva |
|- ( ph -> ( g e. ( C Func D ) |-> ( F ( 1st ` ( <. C , D >. o.F E ) ) g ) ) = ( g e. ( C Func D ) |-> ( F o.func g ) ) ) |
| 26 |
|
eqidd |
|- ( ( ph /\ a e. ( g ( C Nat D ) h ) ) -> ( 2nd ` ( <. C , D >. o.F E ) ) = ( 2nd ` ( <. C , D >. o.F E ) ) ) |
| 27 |
|
simpr |
|- ( ( ph /\ a e. ( g ( C Nat D ) h ) ) -> a e. ( g ( C Nat D ) h ) ) |
| 28 |
4
|
adantr |
|- ( ( ph /\ a e. ( g ( C Nat D ) h ) ) -> F e. ( D Func E ) ) |
| 29 |
26 19 2 27 28
|
fucolid |
|- ( ( ph /\ a e. ( g ( C Nat D ) h ) ) -> ( ( ( Id ` R ) ` F ) ( <. F , g >. ( 2nd ` ( <. C , D >. o.F E ) ) <. F , h >. ) a ) = ( x e. ( Base ` C ) |-> ( ( ( ( 1st ` g ) ` x ) ( 2nd ` F ) ( ( 1st ` h ) ` x ) ) ` ( a ` x ) ) ) ) |
| 30 |
29
|
mpteq2dva |
|- ( ph -> ( a e. ( g ( C Nat D ) h ) |-> ( ( ( Id ` R ) ` F ) ( <. F , g >. ( 2nd ` ( <. C , D >. o.F E ) ) <. F , h >. ) a ) ) = ( a e. ( g ( C Nat D ) h ) |-> ( x e. ( Base ` C ) |-> ( ( ( ( 1st ` g ) ` x ) ( 2nd ` F ) ( ( 1st ` h ) ` x ) ) ` ( a ` x ) ) ) ) ) |
| 31 |
30
|
mpoeq3dv |
|- ( ph -> ( g e. ( C Func D ) , h e. ( C Func D ) |-> ( a e. ( g ( C Nat D ) h ) |-> ( ( ( Id ` R ) ` F ) ( <. F , g >. ( 2nd ` ( <. C , D >. o.F E ) ) <. F , h >. ) a ) ) ) = ( g e. ( C Func D ) , h e. ( C Func D ) |-> ( a e. ( g ( C Nat D ) h ) |-> ( x e. ( Base ` C ) |-> ( ( ( ( 1st ` g ) ` x ) ( 2nd ` F ) ( ( 1st ` h ) ` x ) ) ` ( a ` x ) ) ) ) ) ) |
| 32 |
25 31
|
opeq12d |
|- ( ph -> <. ( g e. ( C Func D ) |-> ( F ( 1st ` ( <. C , D >. o.F E ) ) g ) ) , ( g e. ( C Func D ) , h e. ( C Func D ) |-> ( a e. ( g ( C Nat D ) h ) |-> ( ( ( Id ` R ) ` F ) ( <. F , g >. ( 2nd ` ( <. C , D >. o.F E ) ) <. F , h >. ) a ) ) ) >. = <. ( g e. ( C Func D ) |-> ( F o.func g ) ) , ( g e. ( C Func D ) , h e. ( C Func D ) |-> ( a e. ( g ( C Nat D ) h ) |-> ( x e. ( Base ` C ) |-> ( ( ( ( 1st ` g ) ` x ) ( 2nd ` F ) ( ( 1st ` h ) ` x ) ) ` ( a ` x ) ) ) ) ) >. ) |
| 33 |
20 32
|
eqtrd |
|- ( ph -> K = <. ( g e. ( C Func D ) |-> ( F o.func g ) ) , ( g e. ( C Func D ) , h e. ( C Func D ) |-> ( a e. ( g ( C Nat D ) h ) |-> ( x e. ( Base ` C ) |-> ( ( ( ( 1st ` g ) ` x ) ( 2nd ` F ) ( ( 1st ` h ) ` x ) ) ` ( a ` x ) ) ) ) ) >. ) |