| Step |
Hyp |
Ref |
Expression |
| 1 |
|
postcofval.q |
⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) |
| 2 |
|
postcofval.r |
⊢ 𝑅 = ( 𝐷 FuncCat 𝐸 ) |
| 3 |
|
postcofval.o |
⊢ ⚬ = ( 〈 𝑅 , 𝑄 〉 curryF ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) |
| 4 |
|
postcofval.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 Func 𝐸 ) ) |
| 5 |
|
postcofval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 6 |
|
postcofval.k |
⊢ 𝐾 = ( ( 1st ‘ ⚬ ) ‘ 𝐹 ) |
| 7 |
2
|
fucbas |
⊢ ( 𝐷 Func 𝐸 ) = ( Base ‘ 𝑅 ) |
| 8 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐸 ) |
| 9 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐹 ∈ ( 𝐷 Func 𝐸 ) ) → ( 1st ‘ 𝐹 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 10 |
8 4 9
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 11 |
10
|
funcrcl2 |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 12 |
10
|
funcrcl3 |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 13 |
2 11 12
|
fuccat |
⊢ ( 𝜑 → 𝑅 ∈ Cat ) |
| 14 |
1 5 11
|
fuccat |
⊢ ( 𝜑 → 𝑄 ∈ Cat ) |
| 15 |
2 1
|
oveq12i |
⊢ ( 𝑅 ×c 𝑄 ) = ( ( 𝐷 FuncCat 𝐸 ) ×c ( 𝐶 FuncCat 𝐷 ) ) |
| 16 |
|
eqid |
⊢ ( 𝐶 FuncCat 𝐸 ) = ( 𝐶 FuncCat 𝐸 ) |
| 17 |
15 16 5 11 12
|
fucofunca |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ∈ ( ( 𝑅 ×c 𝑄 ) Func ( 𝐶 FuncCat 𝐸 ) ) ) |
| 18 |
1
|
fucbas |
⊢ ( 𝐶 Func 𝐷 ) = ( Base ‘ 𝑄 ) |
| 19 |
|
eqid |
⊢ ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 ) |
| 20 |
1 19
|
fuchom |
⊢ ( 𝐶 Nat 𝐷 ) = ( Hom ‘ 𝑄 ) |
| 21 |
|
eqid |
⊢ ( Id ‘ 𝑅 ) = ( Id ‘ 𝑅 ) |
| 22 |
3 7 13 14 17 18 4 6 20 21
|
curf1 |
⊢ ( 𝜑 → 𝐾 = 〈 ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ( 𝐹 ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) 𝑔 ) ) , ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) , ℎ ∈ ( 𝐶 Func 𝐷 ) ↦ ( 𝑎 ∈ ( 𝑔 ( 𝐶 Nat 𝐷 ) ℎ ) ↦ ( ( ( Id ‘ 𝑅 ) ‘ 𝐹 ) ( 〈 𝐹 , 𝑔 〉 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) 〈 𝐹 , ℎ 〉 ) 𝑎 ) ) ) 〉 ) |
| 23 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) = ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) |
| 25 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → 𝐹 ∈ ( 𝐷 Func 𝐸 ) ) |
| 26 |
23 24 25
|
fuco11b |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( 𝐹 ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) 𝑔 ) = ( 𝐹 ∘func 𝑔 ) ) |
| 27 |
26
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ( 𝐹 ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) 𝑔 ) ) = ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ( 𝐹 ∘func 𝑔 ) ) ) |
| 28 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑔 ( 𝐶 Nat 𝐷 ) ℎ ) ) → ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) = ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) ) |
| 29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑔 ( 𝐶 Nat 𝐷 ) ℎ ) ) → 𝑎 ∈ ( 𝑔 ( 𝐶 Nat 𝐷 ) ℎ ) ) |
| 30 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑔 ( 𝐶 Nat 𝐷 ) ℎ ) ) → 𝐹 ∈ ( 𝐷 Func 𝐸 ) ) |
| 31 |
28 21 2 29 30
|
fucolid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑔 ( 𝐶 Nat 𝐷 ) ℎ ) ) → ( ( ( Id ‘ 𝑅 ) ‘ 𝐹 ) ( 〈 𝐹 , 𝑔 〉 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) 〈 𝐹 , ℎ 〉 ) 𝑎 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) ( 2nd ‘ 𝐹 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 32 |
31
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝑔 ( 𝐶 Nat 𝐷 ) ℎ ) ↦ ( ( ( Id ‘ 𝑅 ) ‘ 𝐹 ) ( 〈 𝐹 , 𝑔 〉 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) 〈 𝐹 , ℎ 〉 ) 𝑎 ) ) = ( 𝑎 ∈ ( 𝑔 ( 𝐶 Nat 𝐷 ) ℎ ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) ( 2nd ‘ 𝐹 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) |
| 33 |
32
|
mpoeq3dv |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) , ℎ ∈ ( 𝐶 Func 𝐷 ) ↦ ( 𝑎 ∈ ( 𝑔 ( 𝐶 Nat 𝐷 ) ℎ ) ↦ ( ( ( Id ‘ 𝑅 ) ‘ 𝐹 ) ( 〈 𝐹 , 𝑔 〉 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) 〈 𝐹 , ℎ 〉 ) 𝑎 ) ) ) = ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) , ℎ ∈ ( 𝐶 Func 𝐷 ) ↦ ( 𝑎 ∈ ( 𝑔 ( 𝐶 Nat 𝐷 ) ℎ ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) ( 2nd ‘ 𝐹 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) |
| 34 |
27 33
|
opeq12d |
⊢ ( 𝜑 → 〈 ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ( 𝐹 ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) 𝑔 ) ) , ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) , ℎ ∈ ( 𝐶 Func 𝐷 ) ↦ ( 𝑎 ∈ ( 𝑔 ( 𝐶 Nat 𝐷 ) ℎ ) ↦ ( ( ( Id ‘ 𝑅 ) ‘ 𝐹 ) ( 〈 𝐹 , 𝑔 〉 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) 〈 𝐹 , ℎ 〉 ) 𝑎 ) ) ) 〉 = 〈 ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ( 𝐹 ∘func 𝑔 ) ) , ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) , ℎ ∈ ( 𝐶 Func 𝐷 ) ↦ ( 𝑎 ∈ ( 𝑔 ( 𝐶 Nat 𝐷 ) ℎ ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) ( 2nd ‘ 𝐹 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 ) |
| 35 |
22 34
|
eqtrd |
⊢ ( 𝜑 → 𝐾 = 〈 ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ( 𝐹 ∘func 𝑔 ) ) , ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) , ℎ ∈ ( 𝐶 Func 𝐷 ) ↦ ( 𝑎 ∈ ( 𝑔 ( 𝐶 Nat 𝐷 ) ℎ ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) ( 2nd ‘ 𝐹 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 ) |