Step |
Hyp |
Ref |
Expression |
1 |
|
psrgrp.s |
|- S = ( I mPwSer R ) |
2 |
|
psrgrp.i |
|- ( ph -> I e. V ) |
3 |
|
psrgrp.r |
|- ( ph -> R e. Grp ) |
4 |
|
psrnegcl.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
5 |
|
psrnegcl.i |
|- N = ( invg ` R ) |
6 |
|
psrnegcl.b |
|- B = ( Base ` S ) |
7 |
|
psrnegcl.z |
|- ( ph -> X e. B ) |
8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
9 |
8 5 3
|
grpinvf1o |
|- ( ph -> N : ( Base ` R ) -1-1-onto-> ( Base ` R ) ) |
10 |
|
f1of |
|- ( N : ( Base ` R ) -1-1-onto-> ( Base ` R ) -> N : ( Base ` R ) --> ( Base ` R ) ) |
11 |
9 10
|
syl |
|- ( ph -> N : ( Base ` R ) --> ( Base ` R ) ) |
12 |
1 8 4 6 7
|
psrelbas |
|- ( ph -> X : D --> ( Base ` R ) ) |
13 |
|
fco |
|- ( ( N : ( Base ` R ) --> ( Base ` R ) /\ X : D --> ( Base ` R ) ) -> ( N o. X ) : D --> ( Base ` R ) ) |
14 |
11 12 13
|
syl2anc |
|- ( ph -> ( N o. X ) : D --> ( Base ` R ) ) |
15 |
|
fvex |
|- ( Base ` R ) e. _V |
16 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
17 |
4 16
|
rabex2 |
|- D e. _V |
18 |
15 17
|
elmap |
|- ( ( N o. X ) e. ( ( Base ` R ) ^m D ) <-> ( N o. X ) : D --> ( Base ` R ) ) |
19 |
14 18
|
sylibr |
|- ( ph -> ( N o. X ) e. ( ( Base ` R ) ^m D ) ) |
20 |
1 8 4 6 2
|
psrbas |
|- ( ph -> B = ( ( Base ` R ) ^m D ) ) |
21 |
19 20
|
eleqtrrd |
|- ( ph -> ( N o. X ) e. B ) |