| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwslnmlem1.y |
|- Y = ( W ^s { i } ) |
| 2 |
|
lnmlmod |
|- ( W e. LNoeM -> W e. LMod ) |
| 3 |
|
vsnex |
|- { i } e. _V |
| 4 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 5 |
|
eqid |
|- ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) = ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) |
| 6 |
1 4 5
|
pwsdiaglmhm |
|- ( ( W e. LMod /\ { i } e. _V ) -> ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) e. ( W LMHom Y ) ) |
| 7 |
2 3 6
|
sylancl |
|- ( W e. LNoeM -> ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) e. ( W LMHom Y ) ) |
| 8 |
|
id |
|- ( W e. LNoeM -> W e. LNoeM ) |
| 9 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
| 10 |
1 4 5 9
|
pwssnf1o |
|- ( ( W e. LNoeM /\ i e. _V ) -> ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) : ( Base ` W ) -1-1-onto-> ( Base ` Y ) ) |
| 11 |
10
|
elvd |
|- ( W e. LNoeM -> ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) : ( Base ` W ) -1-1-onto-> ( Base ` Y ) ) |
| 12 |
|
f1ofo |
|- ( ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) : ( Base ` W ) -1-1-onto-> ( Base ` Y ) -> ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) : ( Base ` W ) -onto-> ( Base ` Y ) ) |
| 13 |
|
forn |
|- ( ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) : ( Base ` W ) -onto-> ( Base ` Y ) -> ran ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) = ( Base ` Y ) ) |
| 14 |
11 12 13
|
3syl |
|- ( W e. LNoeM -> ran ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) = ( Base ` Y ) ) |
| 15 |
9
|
lnmepi |
|- ( ( ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) e. ( W LMHom Y ) /\ W e. LNoeM /\ ran ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) = ( Base ` Y ) ) -> Y e. LNoeM ) |
| 16 |
7 8 14 15
|
syl3anc |
|- ( W e. LNoeM -> Y e. LNoeM ) |