| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwslnmlem1.y |  |-  Y = ( W ^s { i } ) | 
						
							| 2 |  | lnmlmod |  |-  ( W e. LNoeM -> W e. LMod ) | 
						
							| 3 |  | vsnex |  |-  { i } e. _V | 
						
							| 4 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 5 |  | eqid |  |-  ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) = ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) | 
						
							| 6 | 1 4 5 | pwsdiaglmhm |  |-  ( ( W e. LMod /\ { i } e. _V ) -> ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) e. ( W LMHom Y ) ) | 
						
							| 7 | 2 3 6 | sylancl |  |-  ( W e. LNoeM -> ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) e. ( W LMHom Y ) ) | 
						
							| 8 |  | id |  |-  ( W e. LNoeM -> W e. LNoeM ) | 
						
							| 9 |  | eqid |  |-  ( Base ` Y ) = ( Base ` Y ) | 
						
							| 10 | 1 4 5 9 | pwssnf1o |  |-  ( ( W e. LNoeM /\ i e. _V ) -> ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) : ( Base ` W ) -1-1-onto-> ( Base ` Y ) ) | 
						
							| 11 | 10 | elvd |  |-  ( W e. LNoeM -> ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) : ( Base ` W ) -1-1-onto-> ( Base ` Y ) ) | 
						
							| 12 |  | f1ofo |  |-  ( ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) : ( Base ` W ) -1-1-onto-> ( Base ` Y ) -> ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) : ( Base ` W ) -onto-> ( Base ` Y ) ) | 
						
							| 13 |  | forn |  |-  ( ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) : ( Base ` W ) -onto-> ( Base ` Y ) -> ran ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) = ( Base ` Y ) ) | 
						
							| 14 | 11 12 13 | 3syl |  |-  ( W e. LNoeM -> ran ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) = ( Base ` Y ) ) | 
						
							| 15 | 9 | lnmepi |  |-  ( ( ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) e. ( W LMHom Y ) /\ W e. LNoeM /\ ran ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) = ( Base ` Y ) ) -> Y e. LNoeM ) | 
						
							| 16 | 7 8 14 15 | syl3anc |  |-  ( W e. LNoeM -> Y e. LNoeM ) |