| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwslnmlem2.a |  |-  A e. _V | 
						
							| 2 |  | pwslnmlem2.b |  |-  B e. _V | 
						
							| 3 |  | pwslnmlem2.x |  |-  X = ( W ^s A ) | 
						
							| 4 |  | pwslnmlem2.y |  |-  Y = ( W ^s B ) | 
						
							| 5 |  | pwslnmlem2.z |  |-  Z = ( W ^s ( A u. B ) ) | 
						
							| 6 |  | pwslnmlem2.w |  |-  ( ph -> W e. LMod ) | 
						
							| 7 |  | pwslnmlem2.dj |  |-  ( ph -> ( A i^i B ) = (/) ) | 
						
							| 8 |  | pwslnmlem2.xn |  |-  ( ph -> X e. LNoeM ) | 
						
							| 9 |  | pwslnmlem2.yn |  |-  ( ph -> Y e. LNoeM ) | 
						
							| 10 | 1 2 | unex |  |-  ( A u. B ) e. _V | 
						
							| 11 | 10 | a1i |  |-  ( ph -> ( A u. B ) e. _V ) | 
						
							| 12 |  | ssun1 |  |-  A C_ ( A u. B ) | 
						
							| 13 | 12 | a1i |  |-  ( ph -> A C_ ( A u. B ) ) | 
						
							| 14 |  | eqid |  |-  ( Base ` Z ) = ( Base ` Z ) | 
						
							| 15 |  | eqid |  |-  ( Base ` X ) = ( Base ` X ) | 
						
							| 16 |  | eqid |  |-  ( x e. ( Base ` Z ) |-> ( x |` A ) ) = ( x e. ( Base ` Z ) |-> ( x |` A ) ) | 
						
							| 17 | 5 3 14 15 16 | pwssplit3 |  |-  ( ( W e. LMod /\ ( A u. B ) e. _V /\ A C_ ( A u. B ) ) -> ( x e. ( Base ` Z ) |-> ( x |` A ) ) e. ( Z LMHom X ) ) | 
						
							| 18 | 6 11 13 17 | syl3anc |  |-  ( ph -> ( x e. ( Base ` Z ) |-> ( x |` A ) ) e. ( Z LMHom X ) ) | 
						
							| 19 |  | fvex |  |-  ( 0g ` X ) e. _V | 
						
							| 20 | 16 | mptiniseg |  |-  ( ( 0g ` X ) e. _V -> ( `' ( x e. ( Base ` Z ) |-> ( x |` A ) ) " { ( 0g ` X ) } ) = { x e. ( Base ` Z ) | ( x |` A ) = ( 0g ` X ) } ) | 
						
							| 21 | 19 20 | ax-mp |  |-  ( `' ( x e. ( Base ` Z ) |-> ( x |` A ) ) " { ( 0g ` X ) } ) = { x e. ( Base ` Z ) | ( x |` A ) = ( 0g ` X ) } | 
						
							| 22 |  | lmodgrp |  |-  ( W e. LMod -> W e. Grp ) | 
						
							| 23 |  | grpmnd |  |-  ( W e. Grp -> W e. Mnd ) | 
						
							| 24 | 6 22 23 | 3syl |  |-  ( ph -> W e. Mnd ) | 
						
							| 25 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 26 | 3 25 | pws0g |  |-  ( ( W e. Mnd /\ A e. _V ) -> ( A X. { ( 0g ` W ) } ) = ( 0g ` X ) ) | 
						
							| 27 | 24 1 26 | sylancl |  |-  ( ph -> ( A X. { ( 0g ` W ) } ) = ( 0g ` X ) ) | 
						
							| 28 | 27 | eqcomd |  |-  ( ph -> ( 0g ` X ) = ( A X. { ( 0g ` W ) } ) ) | 
						
							| 29 | 28 | eqeq2d |  |-  ( ph -> ( ( x |` A ) = ( 0g ` X ) <-> ( x |` A ) = ( A X. { ( 0g ` W ) } ) ) ) | 
						
							| 30 | 29 | rabbidv |  |-  ( ph -> { x e. ( Base ` Z ) | ( x |` A ) = ( 0g ` X ) } = { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } ) | 
						
							| 31 | 21 30 | eqtrid |  |-  ( ph -> ( `' ( x e. ( Base ` Z ) |-> ( x |` A ) ) " { ( 0g ` X ) } ) = { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } ) | 
						
							| 32 | 31 | oveq2d |  |-  ( ph -> ( Z |`s ( `' ( x e. ( Base ` Z ) |-> ( x |` A ) ) " { ( 0g ` X ) } ) ) = ( Z |`s { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } ) ) | 
						
							| 33 |  | eqid |  |-  { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } = { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } | 
						
							| 34 |  | eqid |  |-  ( y e. { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } |-> ( y |` B ) ) = ( y e. { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } |-> ( y |` B ) ) | 
						
							| 35 |  | eqid |  |-  ( Z |`s { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } ) = ( Z |`s { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } ) | 
						
							| 36 | 5 14 25 33 34 3 4 35 | pwssplit4 |  |-  ( ( W e. LMod /\ ( A u. B ) e. _V /\ ( A i^i B ) = (/) ) -> ( y e. { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } |-> ( y |` B ) ) e. ( ( Z |`s { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } ) LMIso Y ) ) | 
						
							| 37 | 6 11 7 36 | syl3anc |  |-  ( ph -> ( y e. { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } |-> ( y |` B ) ) e. ( ( Z |`s { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } ) LMIso Y ) ) | 
						
							| 38 |  | brlmici |  |-  ( ( y e. { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } |-> ( y |` B ) ) e. ( ( Z |`s { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } ) LMIso Y ) -> ( Z |`s { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } ) ~=m Y ) | 
						
							| 39 |  | lnmlmic |  |-  ( ( Z |`s { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } ) ~=m Y -> ( ( Z |`s { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } ) e. LNoeM <-> Y e. LNoeM ) ) | 
						
							| 40 | 37 38 39 | 3syl |  |-  ( ph -> ( ( Z |`s { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } ) e. LNoeM <-> Y e. LNoeM ) ) | 
						
							| 41 | 9 40 | mpbird |  |-  ( ph -> ( Z |`s { x e. ( Base ` Z ) | ( x |` A ) = ( A X. { ( 0g ` W ) } ) } ) e. LNoeM ) | 
						
							| 42 | 32 41 | eqeltrd |  |-  ( ph -> ( Z |`s ( `' ( x e. ( Base ` Z ) |-> ( x |` A ) ) " { ( 0g ` X ) } ) ) e. LNoeM ) | 
						
							| 43 | 5 3 14 15 16 | pwssplit1 |  |-  ( ( W e. Mnd /\ ( A u. B ) e. _V /\ A C_ ( A u. B ) ) -> ( x e. ( Base ` Z ) |-> ( x |` A ) ) : ( Base ` Z ) -onto-> ( Base ` X ) ) | 
						
							| 44 | 24 11 13 43 | syl3anc |  |-  ( ph -> ( x e. ( Base ` Z ) |-> ( x |` A ) ) : ( Base ` Z ) -onto-> ( Base ` X ) ) | 
						
							| 45 |  | forn |  |-  ( ( x e. ( Base ` Z ) |-> ( x |` A ) ) : ( Base ` Z ) -onto-> ( Base ` X ) -> ran ( x e. ( Base ` Z ) |-> ( x |` A ) ) = ( Base ` X ) ) | 
						
							| 46 | 44 45 | syl |  |-  ( ph -> ran ( x e. ( Base ` Z ) |-> ( x |` A ) ) = ( Base ` X ) ) | 
						
							| 47 | 46 | oveq2d |  |-  ( ph -> ( X |`s ran ( x e. ( Base ` Z ) |-> ( x |` A ) ) ) = ( X |`s ( Base ` X ) ) ) | 
						
							| 48 | 15 | ressid |  |-  ( X e. LNoeM -> ( X |`s ( Base ` X ) ) = X ) | 
						
							| 49 | 8 48 | syl |  |-  ( ph -> ( X |`s ( Base ` X ) ) = X ) | 
						
							| 50 | 47 49 | eqtrd |  |-  ( ph -> ( X |`s ran ( x e. ( Base ` Z ) |-> ( x |` A ) ) ) = X ) | 
						
							| 51 | 50 8 | eqeltrd |  |-  ( ph -> ( X |`s ran ( x e. ( Base ` Z ) |-> ( x |` A ) ) ) e. LNoeM ) | 
						
							| 52 |  | eqid |  |-  ( 0g ` X ) = ( 0g ` X ) | 
						
							| 53 |  | eqid |  |-  ( `' ( x e. ( Base ` Z ) |-> ( x |` A ) ) " { ( 0g ` X ) } ) = ( `' ( x e. ( Base ` Z ) |-> ( x |` A ) ) " { ( 0g ` X ) } ) | 
						
							| 54 |  | eqid |  |-  ( Z |`s ( `' ( x e. ( Base ` Z ) |-> ( x |` A ) ) " { ( 0g ` X ) } ) ) = ( Z |`s ( `' ( x e. ( Base ` Z ) |-> ( x |` A ) ) " { ( 0g ` X ) } ) ) | 
						
							| 55 |  | eqid |  |-  ( X |`s ran ( x e. ( Base ` Z ) |-> ( x |` A ) ) ) = ( X |`s ran ( x e. ( Base ` Z ) |-> ( x |` A ) ) ) | 
						
							| 56 | 52 53 54 55 | lmhmlnmsplit |  |-  ( ( ( x e. ( Base ` Z ) |-> ( x |` A ) ) e. ( Z LMHom X ) /\ ( Z |`s ( `' ( x e. ( Base ` Z ) |-> ( x |` A ) ) " { ( 0g ` X ) } ) ) e. LNoeM /\ ( X |`s ran ( x e. ( Base ` Z ) |-> ( x |` A ) ) ) e. LNoeM ) -> Z e. LNoeM ) | 
						
							| 57 | 18 42 51 56 | syl3anc |  |-  ( ph -> Z e. LNoeM ) |