Metamath Proof Explorer


Theorem pwslnmlem2

Description: A sum of powers is Noetherian. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Hypotheses pwslnmlem2.a A V
pwslnmlem2.b B V
pwslnmlem2.x X = W 𝑠 A
pwslnmlem2.y Y = W 𝑠 B
pwslnmlem2.z Z = W 𝑠 A B
pwslnmlem2.w φ W LMod
pwslnmlem2.dj φ A B =
pwslnmlem2.xn φ X LNoeM
pwslnmlem2.yn φ Y LNoeM
Assertion pwslnmlem2 φ Z LNoeM

Proof

Step Hyp Ref Expression
1 pwslnmlem2.a A V
2 pwslnmlem2.b B V
3 pwslnmlem2.x X = W 𝑠 A
4 pwslnmlem2.y Y = W 𝑠 B
5 pwslnmlem2.z Z = W 𝑠 A B
6 pwslnmlem2.w φ W LMod
7 pwslnmlem2.dj φ A B =
8 pwslnmlem2.xn φ X LNoeM
9 pwslnmlem2.yn φ Y LNoeM
10 1 2 unex A B V
11 10 a1i φ A B V
12 ssun1 A A B
13 12 a1i φ A A B
14 eqid Base Z = Base Z
15 eqid Base X = Base X
16 eqid x Base Z x A = x Base Z x A
17 5 3 14 15 16 pwssplit3 W LMod A B V A A B x Base Z x A Z LMHom X
18 6 11 13 17 syl3anc φ x Base Z x A Z LMHom X
19 fvex 0 X V
20 16 mptiniseg 0 X V x Base Z x A -1 0 X = x Base Z | x A = 0 X
21 19 20 ax-mp x Base Z x A -1 0 X = x Base Z | x A = 0 X
22 lmodgrp W LMod W Grp
23 grpmnd W Grp W Mnd
24 6 22 23 3syl φ W Mnd
25 eqid 0 W = 0 W
26 3 25 pws0g W Mnd A V A × 0 W = 0 X
27 24 1 26 sylancl φ A × 0 W = 0 X
28 27 eqcomd φ 0 X = A × 0 W
29 28 eqeq2d φ x A = 0 X x A = A × 0 W
30 29 rabbidv φ x Base Z | x A = 0 X = x Base Z | x A = A × 0 W
31 21 30 syl5eq φ x Base Z x A -1 0 X = x Base Z | x A = A × 0 W
32 31 oveq2d φ Z 𝑠 x Base Z x A -1 0 X = Z 𝑠 x Base Z | x A = A × 0 W
33 eqid x Base Z | x A = A × 0 W = x Base Z | x A = A × 0 W
34 eqid y x Base Z | x A = A × 0 W y B = y x Base Z | x A = A × 0 W y B
35 eqid Z 𝑠 x Base Z | x A = A × 0 W = Z 𝑠 x Base Z | x A = A × 0 W
36 5 14 25 33 34 3 4 35 pwssplit4 W LMod A B V A B = y x Base Z | x A = A × 0 W y B Z 𝑠 x Base Z | x A = A × 0 W LMIso Y
37 6 11 7 36 syl3anc φ y x Base Z | x A = A × 0 W y B Z 𝑠 x Base Z | x A = A × 0 W LMIso Y
38 brlmici y x Base Z | x A = A × 0 W y B Z 𝑠 x Base Z | x A = A × 0 W LMIso Y Z 𝑠 x Base Z | x A = A × 0 W 𝑚 Y
39 lnmlmic Z 𝑠 x Base Z | x A = A × 0 W 𝑚 Y Z 𝑠 x Base Z | x A = A × 0 W LNoeM Y LNoeM
40 37 38 39 3syl φ Z 𝑠 x Base Z | x A = A × 0 W LNoeM Y LNoeM
41 9 40 mpbird φ Z 𝑠 x Base Z | x A = A × 0 W LNoeM
42 32 41 eqeltrd φ Z 𝑠 x Base Z x A -1 0 X LNoeM
43 5 3 14 15 16 pwssplit1 W Mnd A B V A A B x Base Z x A : Base Z onto Base X
44 24 11 13 43 syl3anc φ x Base Z x A : Base Z onto Base X
45 forn x Base Z x A : Base Z onto Base X ran x Base Z x A = Base X
46 44 45 syl φ ran x Base Z x A = Base X
47 46 oveq2d φ X 𝑠 ran x Base Z x A = X 𝑠 Base X
48 15 ressid X LNoeM X 𝑠 Base X = X
49 8 48 syl φ X 𝑠 Base X = X
50 47 49 eqtrd φ X 𝑠 ran x Base Z x A = X
51 50 8 eqeltrd φ X 𝑠 ran x Base Z x A LNoeM
52 eqid 0 X = 0 X
53 eqid x Base Z x A -1 0 X = x Base Z x A -1 0 X
54 eqid Z 𝑠 x Base Z x A -1 0 X = Z 𝑠 x Base Z x A -1 0 X
55 eqid X 𝑠 ran x Base Z x A = X 𝑠 ran x Base Z x A
56 52 53 54 55 lmhmlnmsplit x Base Z x A Z LMHom X Z 𝑠 x Base Z x A -1 0 X LNoeM X 𝑠 ran x Base Z x A LNoeM Z LNoeM
57 18 42 51 56 syl3anc φ Z LNoeM