Metamath Proof Explorer


Theorem lnmlmic

Description: Noetherian is an invariant property of modules. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion lnmlmic R𝑚SRLNoeMSLNoeM

Proof

Step Hyp Ref Expression
1 brlmic R𝑚SRLMIsoS
2 n0 RLMIsoSaaRLMIsoS
3 1 2 bitri R𝑚SaaRLMIsoS
4 lmimlmhm aRLMIsoSaRLMHomS
5 4 adantr aRLMIsoSRLNoeMaRLMHomS
6 simpr aRLMIsoSRLNoeMRLNoeM
7 eqid BaseR=BaseR
8 eqid BaseS=BaseS
9 7 8 lmimf1o aRLMIsoSa:BaseR1-1 ontoBaseS
10 f1ofo a:BaseR1-1 ontoBaseSa:BaseRontoBaseS
11 forn a:BaseRontoBaseSrana=BaseS
12 9 10 11 3syl aRLMIsoSrana=BaseS
13 12 adantr aRLMIsoSRLNoeMrana=BaseS
14 8 lnmepi aRLMHomSRLNoeMrana=BaseSSLNoeM
15 5 6 13 14 syl3anc aRLMIsoSRLNoeMSLNoeM
16 islmim2 aRLMIsoSaRLMHomSa-1SLMHomR
17 16 simprbi aRLMIsoSa-1SLMHomR
18 17 adantr aRLMIsoSSLNoeMa-1SLMHomR
19 simpr aRLMIsoSSLNoeMSLNoeM
20 dfdm4 doma=rana-1
21 f1odm a:BaseR1-1 ontoBaseSdoma=BaseR
22 9 21 syl aRLMIsoSdoma=BaseR
23 22 adantr aRLMIsoSSLNoeMdoma=BaseR
24 20 23 eqtr3id aRLMIsoSSLNoeMrana-1=BaseR
25 7 lnmepi a-1SLMHomRSLNoeMrana-1=BaseRRLNoeM
26 18 19 24 25 syl3anc aRLMIsoSSLNoeMRLNoeM
27 15 26 impbida aRLMIsoSRLNoeMSLNoeM
28 27 exlimiv aaRLMIsoSRLNoeMSLNoeM
29 3 28 sylbi R𝑚SRLNoeMSLNoeM