Metamath Proof Explorer


Theorem lnmepi

Description: Epimorphic images of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis lnmepi.b B=BaseT
Assertion lnmepi FSLMHomTSLNoeMranF=BTLNoeM

Proof

Step Hyp Ref Expression
1 lnmepi.b B=BaseT
2 lmhmlmod2 FSLMHomTTLMod
3 2 3ad2ant1 FSLMHomTSLNoeMranF=BTLMod
4 eqid BaseS=BaseS
5 4 1 lmhmf FSLMHomTF:BaseSB
6 5 3ad2ant1 FSLMHomTSLNoeMranF=BF:BaseSB
7 simp3 FSLMHomTSLNoeMranF=BranF=B
8 dffo2 F:BaseSontoBF:BaseSBranF=B
9 6 7 8 sylanbrc FSLMHomTSLNoeMranF=BF:BaseSontoB
10 eqid LSubSpT=LSubSpT
11 1 10 lssss aLSubSpTaB
12 foimacnv F:BaseSontoBaBFF-1a=a
13 9 11 12 syl2an FSLMHomTSLNoeMranF=BaLSubSpTFF-1a=a
14 13 oveq2d FSLMHomTSLNoeMranF=BaLSubSpTT𝑠FF-1a=T𝑠a
15 eqid T𝑠FF-1a=T𝑠FF-1a
16 eqid S𝑠F-1a=S𝑠F-1a
17 eqid LSubSpS=LSubSpS
18 simpl2 FSLMHomTSLNoeMranF=BaLSubSpTSLNoeM
19 17 10 lmhmpreima FSLMHomTaLSubSpTF-1aLSubSpS
20 19 3ad2antl1 FSLMHomTSLNoeMranF=BaLSubSpTF-1aLSubSpS
21 17 16 lnmlssfg SLNoeMF-1aLSubSpSS𝑠F-1aLFinGen
22 18 20 21 syl2anc FSLMHomTSLNoeMranF=BaLSubSpTS𝑠F-1aLFinGen
23 simpl1 FSLMHomTSLNoeMranF=BaLSubSpTFSLMHomT
24 15 16 17 22 20 23 lmhmfgima FSLMHomTSLNoeMranF=BaLSubSpTT𝑠FF-1aLFinGen
25 14 24 eqeltrrd FSLMHomTSLNoeMranF=BaLSubSpTT𝑠aLFinGen
26 25 ralrimiva FSLMHomTSLNoeMranF=BaLSubSpTT𝑠aLFinGen
27 10 islnm TLNoeMTLModaLSubSpTT𝑠aLFinGen
28 3 26 27 sylanbrc FSLMHomTSLNoeMranF=BTLNoeM