| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnmepi.b |
|- B = ( Base ` T ) |
| 2 |
|
lmhmlmod2 |
|- ( F e. ( S LMHom T ) -> T e. LMod ) |
| 3 |
2
|
3ad2ant1 |
|- ( ( F e. ( S LMHom T ) /\ S e. LNoeM /\ ran F = B ) -> T e. LMod ) |
| 4 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 5 |
4 1
|
lmhmf |
|- ( F e. ( S LMHom T ) -> F : ( Base ` S ) --> B ) |
| 6 |
5
|
3ad2ant1 |
|- ( ( F e. ( S LMHom T ) /\ S e. LNoeM /\ ran F = B ) -> F : ( Base ` S ) --> B ) |
| 7 |
|
simp3 |
|- ( ( F e. ( S LMHom T ) /\ S e. LNoeM /\ ran F = B ) -> ran F = B ) |
| 8 |
|
dffo2 |
|- ( F : ( Base ` S ) -onto-> B <-> ( F : ( Base ` S ) --> B /\ ran F = B ) ) |
| 9 |
6 7 8
|
sylanbrc |
|- ( ( F e. ( S LMHom T ) /\ S e. LNoeM /\ ran F = B ) -> F : ( Base ` S ) -onto-> B ) |
| 10 |
|
eqid |
|- ( LSubSp ` T ) = ( LSubSp ` T ) |
| 11 |
1 10
|
lssss |
|- ( a e. ( LSubSp ` T ) -> a C_ B ) |
| 12 |
|
foimacnv |
|- ( ( F : ( Base ` S ) -onto-> B /\ a C_ B ) -> ( F " ( `' F " a ) ) = a ) |
| 13 |
9 11 12
|
syl2an |
|- ( ( ( F e. ( S LMHom T ) /\ S e. LNoeM /\ ran F = B ) /\ a e. ( LSubSp ` T ) ) -> ( F " ( `' F " a ) ) = a ) |
| 14 |
13
|
oveq2d |
|- ( ( ( F e. ( S LMHom T ) /\ S e. LNoeM /\ ran F = B ) /\ a e. ( LSubSp ` T ) ) -> ( T |`s ( F " ( `' F " a ) ) ) = ( T |`s a ) ) |
| 15 |
|
eqid |
|- ( T |`s ( F " ( `' F " a ) ) ) = ( T |`s ( F " ( `' F " a ) ) ) |
| 16 |
|
eqid |
|- ( S |`s ( `' F " a ) ) = ( S |`s ( `' F " a ) ) |
| 17 |
|
eqid |
|- ( LSubSp ` S ) = ( LSubSp ` S ) |
| 18 |
|
simpl2 |
|- ( ( ( F e. ( S LMHom T ) /\ S e. LNoeM /\ ran F = B ) /\ a e. ( LSubSp ` T ) ) -> S e. LNoeM ) |
| 19 |
17 10
|
lmhmpreima |
|- ( ( F e. ( S LMHom T ) /\ a e. ( LSubSp ` T ) ) -> ( `' F " a ) e. ( LSubSp ` S ) ) |
| 20 |
19
|
3ad2antl1 |
|- ( ( ( F e. ( S LMHom T ) /\ S e. LNoeM /\ ran F = B ) /\ a e. ( LSubSp ` T ) ) -> ( `' F " a ) e. ( LSubSp ` S ) ) |
| 21 |
17 16
|
lnmlssfg |
|- ( ( S e. LNoeM /\ ( `' F " a ) e. ( LSubSp ` S ) ) -> ( S |`s ( `' F " a ) ) e. LFinGen ) |
| 22 |
18 20 21
|
syl2anc |
|- ( ( ( F e. ( S LMHom T ) /\ S e. LNoeM /\ ran F = B ) /\ a e. ( LSubSp ` T ) ) -> ( S |`s ( `' F " a ) ) e. LFinGen ) |
| 23 |
|
simpl1 |
|- ( ( ( F e. ( S LMHom T ) /\ S e. LNoeM /\ ran F = B ) /\ a e. ( LSubSp ` T ) ) -> F e. ( S LMHom T ) ) |
| 24 |
15 16 17 22 20 23
|
lmhmfgima |
|- ( ( ( F e. ( S LMHom T ) /\ S e. LNoeM /\ ran F = B ) /\ a e. ( LSubSp ` T ) ) -> ( T |`s ( F " ( `' F " a ) ) ) e. LFinGen ) |
| 25 |
14 24
|
eqeltrrd |
|- ( ( ( F e. ( S LMHom T ) /\ S e. LNoeM /\ ran F = B ) /\ a e. ( LSubSp ` T ) ) -> ( T |`s a ) e. LFinGen ) |
| 26 |
25
|
ralrimiva |
|- ( ( F e. ( S LMHom T ) /\ S e. LNoeM /\ ran F = B ) -> A. a e. ( LSubSp ` T ) ( T |`s a ) e. LFinGen ) |
| 27 |
10
|
islnm |
|- ( T e. LNoeM <-> ( T e. LMod /\ A. a e. ( LSubSp ` T ) ( T |`s a ) e. LFinGen ) ) |
| 28 |
3 26 27
|
sylanbrc |
|- ( ( F e. ( S LMHom T ) /\ S e. LNoeM /\ ran F = B ) -> T e. LNoeM ) |