| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmhmfgima.y |
|- Y = ( T |`s ( F " A ) ) |
| 2 |
|
lmhmfgima.x |
|- X = ( S |`s A ) |
| 3 |
|
lmhmfgima.u |
|- U = ( LSubSp ` S ) |
| 4 |
|
lmhmfgima.xf |
|- ( ph -> X e. LFinGen ) |
| 5 |
|
lmhmfgima.a |
|- ( ph -> A e. U ) |
| 6 |
|
lmhmfgima.f |
|- ( ph -> F e. ( S LMHom T ) ) |
| 7 |
|
lmhmlmod1 |
|- ( F e. ( S LMHom T ) -> S e. LMod ) |
| 8 |
6 7
|
syl |
|- ( ph -> S e. LMod ) |
| 9 |
|
eqid |
|- ( LSpan ` S ) = ( LSpan ` S ) |
| 10 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 11 |
2 3 9 10
|
islssfg2 |
|- ( ( S e. LMod /\ A e. U ) -> ( X e. LFinGen <-> E. x e. ( ~P ( Base ` S ) i^i Fin ) ( ( LSpan ` S ) ` x ) = A ) ) |
| 12 |
8 5 11
|
syl2anc |
|- ( ph -> ( X e. LFinGen <-> E. x e. ( ~P ( Base ` S ) i^i Fin ) ( ( LSpan ` S ) ` x ) = A ) ) |
| 13 |
4 12
|
mpbid |
|- ( ph -> E. x e. ( ~P ( Base ` S ) i^i Fin ) ( ( LSpan ` S ) ` x ) = A ) |
| 14 |
|
inss1 |
|- ( ~P ( Base ` S ) i^i Fin ) C_ ~P ( Base ` S ) |
| 15 |
14
|
sseli |
|- ( x e. ( ~P ( Base ` S ) i^i Fin ) -> x e. ~P ( Base ` S ) ) |
| 16 |
15
|
elpwid |
|- ( x e. ( ~P ( Base ` S ) i^i Fin ) -> x C_ ( Base ` S ) ) |
| 17 |
|
eqid |
|- ( LSpan ` T ) = ( LSpan ` T ) |
| 18 |
10 9 17
|
lmhmlsp |
|- ( ( F e. ( S LMHom T ) /\ x C_ ( Base ` S ) ) -> ( F " ( ( LSpan ` S ) ` x ) ) = ( ( LSpan ` T ) ` ( F " x ) ) ) |
| 19 |
6 16 18
|
syl2an |
|- ( ( ph /\ x e. ( ~P ( Base ` S ) i^i Fin ) ) -> ( F " ( ( LSpan ` S ) ` x ) ) = ( ( LSpan ` T ) ` ( F " x ) ) ) |
| 20 |
19
|
oveq2d |
|- ( ( ph /\ x e. ( ~P ( Base ` S ) i^i Fin ) ) -> ( T |`s ( F " ( ( LSpan ` S ) ` x ) ) ) = ( T |`s ( ( LSpan ` T ) ` ( F " x ) ) ) ) |
| 21 |
|
lmhmlmod2 |
|- ( F e. ( S LMHom T ) -> T e. LMod ) |
| 22 |
6 21
|
syl |
|- ( ph -> T e. LMod ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ x e. ( ~P ( Base ` S ) i^i Fin ) ) -> T e. LMod ) |
| 24 |
|
imassrn |
|- ( F " x ) C_ ran F |
| 25 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
| 26 |
10 25
|
lmhmf |
|- ( F e. ( S LMHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 27 |
6 26
|
syl |
|- ( ph -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 28 |
27
|
frnd |
|- ( ph -> ran F C_ ( Base ` T ) ) |
| 29 |
24 28
|
sstrid |
|- ( ph -> ( F " x ) C_ ( Base ` T ) ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ x e. ( ~P ( Base ` S ) i^i Fin ) ) -> ( F " x ) C_ ( Base ` T ) ) |
| 31 |
|
inss2 |
|- ( ~P ( Base ` S ) i^i Fin ) C_ Fin |
| 32 |
31
|
sseli |
|- ( x e. ( ~P ( Base ` S ) i^i Fin ) -> x e. Fin ) |
| 33 |
32
|
adantl |
|- ( ( ph /\ x e. ( ~P ( Base ` S ) i^i Fin ) ) -> x e. Fin ) |
| 34 |
27
|
ffund |
|- ( ph -> Fun F ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ x e. ( ~P ( Base ` S ) i^i Fin ) ) -> Fun F ) |
| 36 |
16
|
adantl |
|- ( ( ph /\ x e. ( ~P ( Base ` S ) i^i Fin ) ) -> x C_ ( Base ` S ) ) |
| 37 |
27
|
fdmd |
|- ( ph -> dom F = ( Base ` S ) ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ x e. ( ~P ( Base ` S ) i^i Fin ) ) -> dom F = ( Base ` S ) ) |
| 39 |
36 38
|
sseqtrrd |
|- ( ( ph /\ x e. ( ~P ( Base ` S ) i^i Fin ) ) -> x C_ dom F ) |
| 40 |
|
fores |
|- ( ( Fun F /\ x C_ dom F ) -> ( F |` x ) : x -onto-> ( F " x ) ) |
| 41 |
35 39 40
|
syl2anc |
|- ( ( ph /\ x e. ( ~P ( Base ` S ) i^i Fin ) ) -> ( F |` x ) : x -onto-> ( F " x ) ) |
| 42 |
|
fofi |
|- ( ( x e. Fin /\ ( F |` x ) : x -onto-> ( F " x ) ) -> ( F " x ) e. Fin ) |
| 43 |
33 41 42
|
syl2anc |
|- ( ( ph /\ x e. ( ~P ( Base ` S ) i^i Fin ) ) -> ( F " x ) e. Fin ) |
| 44 |
|
eqid |
|- ( T |`s ( ( LSpan ` T ) ` ( F " x ) ) ) = ( T |`s ( ( LSpan ` T ) ` ( F " x ) ) ) |
| 45 |
17 25 44
|
islssfgi |
|- ( ( T e. LMod /\ ( F " x ) C_ ( Base ` T ) /\ ( F " x ) e. Fin ) -> ( T |`s ( ( LSpan ` T ) ` ( F " x ) ) ) e. LFinGen ) |
| 46 |
23 30 43 45
|
syl3anc |
|- ( ( ph /\ x e. ( ~P ( Base ` S ) i^i Fin ) ) -> ( T |`s ( ( LSpan ` T ) ` ( F " x ) ) ) e. LFinGen ) |
| 47 |
20 46
|
eqeltrd |
|- ( ( ph /\ x e. ( ~P ( Base ` S ) i^i Fin ) ) -> ( T |`s ( F " ( ( LSpan ` S ) ` x ) ) ) e. LFinGen ) |
| 48 |
|
imaeq2 |
|- ( ( ( LSpan ` S ) ` x ) = A -> ( F " ( ( LSpan ` S ) ` x ) ) = ( F " A ) ) |
| 49 |
48
|
oveq2d |
|- ( ( ( LSpan ` S ) ` x ) = A -> ( T |`s ( F " ( ( LSpan ` S ) ` x ) ) ) = ( T |`s ( F " A ) ) ) |
| 50 |
49
|
eleq1d |
|- ( ( ( LSpan ` S ) ` x ) = A -> ( ( T |`s ( F " ( ( LSpan ` S ) ` x ) ) ) e. LFinGen <-> ( T |`s ( F " A ) ) e. LFinGen ) ) |
| 51 |
47 50
|
syl5ibcom |
|- ( ( ph /\ x e. ( ~P ( Base ` S ) i^i Fin ) ) -> ( ( ( LSpan ` S ) ` x ) = A -> ( T |`s ( F " A ) ) e. LFinGen ) ) |
| 52 |
51
|
rexlimdva |
|- ( ph -> ( E. x e. ( ~P ( Base ` S ) i^i Fin ) ( ( LSpan ` S ) ` x ) = A -> ( T |`s ( F " A ) ) e. LFinGen ) ) |
| 53 |
13 52
|
mpd |
|- ( ph -> ( T |`s ( F " A ) ) e. LFinGen ) |
| 54 |
1 53
|
eqeltrid |
|- ( ph -> Y e. LFinGen ) |