Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmlsp.v |
|- V = ( Base ` S ) |
2 |
|
lmhmlsp.k |
|- K = ( LSpan ` S ) |
3 |
|
lmhmlsp.l |
|- L = ( LSpan ` T ) |
4 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
5 |
1 4
|
lmhmf |
|- ( F e. ( S LMHom T ) -> F : V --> ( Base ` T ) ) |
6 |
5
|
adantr |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> F : V --> ( Base ` T ) ) |
7 |
6
|
ffund |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> Fun F ) |
8 |
|
lmhmlmod1 |
|- ( F e. ( S LMHom T ) -> S e. LMod ) |
9 |
8
|
adantr |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> S e. LMod ) |
10 |
|
lmhmlmod2 |
|- ( F e. ( S LMHom T ) -> T e. LMod ) |
11 |
10
|
adantr |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> T e. LMod ) |
12 |
|
imassrn |
|- ( F " U ) C_ ran F |
13 |
6
|
frnd |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ran F C_ ( Base ` T ) ) |
14 |
12 13
|
sstrid |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " U ) C_ ( Base ` T ) ) |
15 |
|
eqid |
|- ( LSubSp ` T ) = ( LSubSp ` T ) |
16 |
4 15 3
|
lspcl |
|- ( ( T e. LMod /\ ( F " U ) C_ ( Base ` T ) ) -> ( L ` ( F " U ) ) e. ( LSubSp ` T ) ) |
17 |
11 14 16
|
syl2anc |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( L ` ( F " U ) ) e. ( LSubSp ` T ) ) |
18 |
|
eqid |
|- ( LSubSp ` S ) = ( LSubSp ` S ) |
19 |
18 15
|
lmhmpreima |
|- ( ( F e. ( S LMHom T ) /\ ( L ` ( F " U ) ) e. ( LSubSp ` T ) ) -> ( `' F " ( L ` ( F " U ) ) ) e. ( LSubSp ` S ) ) |
20 |
17 19
|
syldan |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( `' F " ( L ` ( F " U ) ) ) e. ( LSubSp ` S ) ) |
21 |
|
incom |
|- ( dom F i^i U ) = ( U i^i dom F ) |
22 |
|
simpr |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> U C_ V ) |
23 |
6
|
fdmd |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> dom F = V ) |
24 |
22 23
|
sseqtrrd |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> U C_ dom F ) |
25 |
|
df-ss |
|- ( U C_ dom F <-> ( U i^i dom F ) = U ) |
26 |
24 25
|
sylib |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( U i^i dom F ) = U ) |
27 |
21 26
|
eqtr2id |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> U = ( dom F i^i U ) ) |
28 |
|
dminss |
|- ( dom F i^i U ) C_ ( `' F " ( F " U ) ) |
29 |
27 28
|
eqsstrdi |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> U C_ ( `' F " ( F " U ) ) ) |
30 |
4 3
|
lspssid |
|- ( ( T e. LMod /\ ( F " U ) C_ ( Base ` T ) ) -> ( F " U ) C_ ( L ` ( F " U ) ) ) |
31 |
11 14 30
|
syl2anc |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " U ) C_ ( L ` ( F " U ) ) ) |
32 |
|
imass2 |
|- ( ( F " U ) C_ ( L ` ( F " U ) ) -> ( `' F " ( F " U ) ) C_ ( `' F " ( L ` ( F " U ) ) ) ) |
33 |
31 32
|
syl |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( `' F " ( F " U ) ) C_ ( `' F " ( L ` ( F " U ) ) ) ) |
34 |
29 33
|
sstrd |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> U C_ ( `' F " ( L ` ( F " U ) ) ) ) |
35 |
18 2
|
lspssp |
|- ( ( S e. LMod /\ ( `' F " ( L ` ( F " U ) ) ) e. ( LSubSp ` S ) /\ U C_ ( `' F " ( L ` ( F " U ) ) ) ) -> ( K ` U ) C_ ( `' F " ( L ` ( F " U ) ) ) ) |
36 |
9 20 34 35
|
syl3anc |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( K ` U ) C_ ( `' F " ( L ` ( F " U ) ) ) ) |
37 |
|
funimass2 |
|- ( ( Fun F /\ ( K ` U ) C_ ( `' F " ( L ` ( F " U ) ) ) ) -> ( F " ( K ` U ) ) C_ ( L ` ( F " U ) ) ) |
38 |
7 36 37
|
syl2anc |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " ( K ` U ) ) C_ ( L ` ( F " U ) ) ) |
39 |
1 18 2
|
lspcl |
|- ( ( S e. LMod /\ U C_ V ) -> ( K ` U ) e. ( LSubSp ` S ) ) |
40 |
9 22 39
|
syl2anc |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( K ` U ) e. ( LSubSp ` S ) ) |
41 |
18 15
|
lmhmima |
|- ( ( F e. ( S LMHom T ) /\ ( K ` U ) e. ( LSubSp ` S ) ) -> ( F " ( K ` U ) ) e. ( LSubSp ` T ) ) |
42 |
40 41
|
syldan |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " ( K ` U ) ) e. ( LSubSp ` T ) ) |
43 |
1 2
|
lspssid |
|- ( ( S e. LMod /\ U C_ V ) -> U C_ ( K ` U ) ) |
44 |
9 22 43
|
syl2anc |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> U C_ ( K ` U ) ) |
45 |
|
imass2 |
|- ( U C_ ( K ` U ) -> ( F " U ) C_ ( F " ( K ` U ) ) ) |
46 |
44 45
|
syl |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " U ) C_ ( F " ( K ` U ) ) ) |
47 |
15 3
|
lspssp |
|- ( ( T e. LMod /\ ( F " ( K ` U ) ) e. ( LSubSp ` T ) /\ ( F " U ) C_ ( F " ( K ` U ) ) ) -> ( L ` ( F " U ) ) C_ ( F " ( K ` U ) ) ) |
48 |
11 42 46 47
|
syl3anc |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( L ` ( F " U ) ) C_ ( F " ( K ` U ) ) ) |
49 |
38 48
|
eqssd |
|- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " ( K ` U ) ) = ( L ` ( F " U ) ) ) |