Metamath Proof Explorer


Theorem lmhmlsp

Description: Homomorphisms preserve spans. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lmhmlsp.v V=BaseS
lmhmlsp.k K=LSpanS
lmhmlsp.l L=LSpanT
Assertion lmhmlsp FSLMHomTUVFKU=LFU

Proof

Step Hyp Ref Expression
1 lmhmlsp.v V=BaseS
2 lmhmlsp.k K=LSpanS
3 lmhmlsp.l L=LSpanT
4 eqid BaseT=BaseT
5 1 4 lmhmf FSLMHomTF:VBaseT
6 5 adantr FSLMHomTUVF:VBaseT
7 6 ffund FSLMHomTUVFunF
8 lmhmlmod1 FSLMHomTSLMod
9 8 adantr FSLMHomTUVSLMod
10 lmhmlmod2 FSLMHomTTLMod
11 10 adantr FSLMHomTUVTLMod
12 imassrn FUranF
13 6 frnd FSLMHomTUVranFBaseT
14 12 13 sstrid FSLMHomTUVFUBaseT
15 eqid LSubSpT=LSubSpT
16 4 15 3 lspcl TLModFUBaseTLFULSubSpT
17 11 14 16 syl2anc FSLMHomTUVLFULSubSpT
18 eqid LSubSpS=LSubSpS
19 18 15 lmhmpreima FSLMHomTLFULSubSpTF-1LFULSubSpS
20 17 19 syldan FSLMHomTUVF-1LFULSubSpS
21 incom domFU=UdomF
22 simpr FSLMHomTUVUV
23 6 fdmd FSLMHomTUVdomF=V
24 22 23 sseqtrrd FSLMHomTUVUdomF
25 df-ss UdomFUdomF=U
26 24 25 sylib FSLMHomTUVUdomF=U
27 21 26 eqtr2id FSLMHomTUVU=domFU
28 dminss domFUF-1FU
29 27 28 eqsstrdi FSLMHomTUVUF-1FU
30 4 3 lspssid TLModFUBaseTFULFU
31 11 14 30 syl2anc FSLMHomTUVFULFU
32 imass2 FULFUF-1FUF-1LFU
33 31 32 syl FSLMHomTUVF-1FUF-1LFU
34 29 33 sstrd FSLMHomTUVUF-1LFU
35 18 2 lspssp SLModF-1LFULSubSpSUF-1LFUKUF-1LFU
36 9 20 34 35 syl3anc FSLMHomTUVKUF-1LFU
37 funimass2 FunFKUF-1LFUFKULFU
38 7 36 37 syl2anc FSLMHomTUVFKULFU
39 1 18 2 lspcl SLModUVKULSubSpS
40 9 22 39 syl2anc FSLMHomTUVKULSubSpS
41 18 15 lmhmima FSLMHomTKULSubSpSFKULSubSpT
42 40 41 syldan FSLMHomTUVFKULSubSpT
43 1 2 lspssid SLModUVUKU
44 9 22 43 syl2anc FSLMHomTUVUKU
45 imass2 UKUFUFKU
46 44 45 syl FSLMHomTUVFUFKU
47 15 3 lspssp TLModFKULSubSpTFUFKULFUFKU
48 11 42 46 47 syl3anc FSLMHomTUVLFUFKU
49 38 48 eqssd FSLMHomTUVFKU=LFU