Metamath Proof Explorer


Theorem lmhmrnlss

Description: The range of a homomorphism is a submodule. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Assertion lmhmrnlss FSLMHomTranFLSubSpT

Proof

Step Hyp Ref Expression
1 eqid BaseS=BaseS
2 eqid BaseT=BaseT
3 1 2 lmhmf FSLMHomTF:BaseSBaseT
4 ffn F:BaseSBaseTFFnBaseS
5 fnima FFnBaseSFBaseS=ranF
6 3 4 5 3syl FSLMHomTFBaseS=ranF
7 lmhmlmod1 FSLMHomTSLMod
8 eqid LSubSpS=LSubSpS
9 1 8 lss1 SLModBaseSLSubSpS
10 7 9 syl FSLMHomTBaseSLSubSpS
11 eqid LSubSpT=LSubSpT
12 8 11 lmhmima FSLMHomTBaseSLSubSpSFBaseSLSubSpT
13 10 12 mpdan FSLMHomTFBaseSLSubSpT
14 6 13 eqeltrrd FSLMHomTranFLSubSpT