| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brlmic |
|- ( R ~=m S <-> ( R LMIso S ) =/= (/) ) |
| 2 |
|
n0 |
|- ( ( R LMIso S ) =/= (/) <-> E. a a e. ( R LMIso S ) ) |
| 3 |
1 2
|
bitri |
|- ( R ~=m S <-> E. a a e. ( R LMIso S ) ) |
| 4 |
|
lmimlmhm |
|- ( a e. ( R LMIso S ) -> a e. ( R LMHom S ) ) |
| 5 |
4
|
adantr |
|- ( ( a e. ( R LMIso S ) /\ R e. LNoeM ) -> a e. ( R LMHom S ) ) |
| 6 |
|
simpr |
|- ( ( a e. ( R LMIso S ) /\ R e. LNoeM ) -> R e. LNoeM ) |
| 7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 8 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 9 |
7 8
|
lmimf1o |
|- ( a e. ( R LMIso S ) -> a : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) |
| 10 |
|
f1ofo |
|- ( a : ( Base ` R ) -1-1-onto-> ( Base ` S ) -> a : ( Base ` R ) -onto-> ( Base ` S ) ) |
| 11 |
|
forn |
|- ( a : ( Base ` R ) -onto-> ( Base ` S ) -> ran a = ( Base ` S ) ) |
| 12 |
9 10 11
|
3syl |
|- ( a e. ( R LMIso S ) -> ran a = ( Base ` S ) ) |
| 13 |
12
|
adantr |
|- ( ( a e. ( R LMIso S ) /\ R e. LNoeM ) -> ran a = ( Base ` S ) ) |
| 14 |
8
|
lnmepi |
|- ( ( a e. ( R LMHom S ) /\ R e. LNoeM /\ ran a = ( Base ` S ) ) -> S e. LNoeM ) |
| 15 |
5 6 13 14
|
syl3anc |
|- ( ( a e. ( R LMIso S ) /\ R e. LNoeM ) -> S e. LNoeM ) |
| 16 |
|
islmim2 |
|- ( a e. ( R LMIso S ) <-> ( a e. ( R LMHom S ) /\ `' a e. ( S LMHom R ) ) ) |
| 17 |
16
|
simprbi |
|- ( a e. ( R LMIso S ) -> `' a e. ( S LMHom R ) ) |
| 18 |
17
|
adantr |
|- ( ( a e. ( R LMIso S ) /\ S e. LNoeM ) -> `' a e. ( S LMHom R ) ) |
| 19 |
|
simpr |
|- ( ( a e. ( R LMIso S ) /\ S e. LNoeM ) -> S e. LNoeM ) |
| 20 |
|
dfdm4 |
|- dom a = ran `' a |
| 21 |
|
f1odm |
|- ( a : ( Base ` R ) -1-1-onto-> ( Base ` S ) -> dom a = ( Base ` R ) ) |
| 22 |
9 21
|
syl |
|- ( a e. ( R LMIso S ) -> dom a = ( Base ` R ) ) |
| 23 |
22
|
adantr |
|- ( ( a e. ( R LMIso S ) /\ S e. LNoeM ) -> dom a = ( Base ` R ) ) |
| 24 |
20 23
|
eqtr3id |
|- ( ( a e. ( R LMIso S ) /\ S e. LNoeM ) -> ran `' a = ( Base ` R ) ) |
| 25 |
7
|
lnmepi |
|- ( ( `' a e. ( S LMHom R ) /\ S e. LNoeM /\ ran `' a = ( Base ` R ) ) -> R e. LNoeM ) |
| 26 |
18 19 24 25
|
syl3anc |
|- ( ( a e. ( R LMIso S ) /\ S e. LNoeM ) -> R e. LNoeM ) |
| 27 |
15 26
|
impbida |
|- ( a e. ( R LMIso S ) -> ( R e. LNoeM <-> S e. LNoeM ) ) |
| 28 |
27
|
exlimiv |
|- ( E. a a e. ( R LMIso S ) -> ( R e. LNoeM <-> S e. LNoeM ) ) |
| 29 |
3 28
|
sylbi |
|- ( R ~=m S -> ( R e. LNoeM <-> S e. LNoeM ) ) |