| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwslnmlem2.a | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | pwslnmlem2.b | ⊢ 𝐵  ∈  V | 
						
							| 3 |  | pwslnmlem2.x | ⊢ 𝑋  =  ( 𝑊  ↑s  𝐴 ) | 
						
							| 4 |  | pwslnmlem2.y | ⊢ 𝑌  =  ( 𝑊  ↑s  𝐵 ) | 
						
							| 5 |  | pwslnmlem2.z | ⊢ 𝑍  =  ( 𝑊  ↑s  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 6 |  | pwslnmlem2.w | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 7 |  | pwslnmlem2.dj | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  =  ∅ ) | 
						
							| 8 |  | pwslnmlem2.xn | ⊢ ( 𝜑  →  𝑋  ∈  LNoeM ) | 
						
							| 9 |  | pwslnmlem2.yn | ⊢ ( 𝜑  →  𝑌  ∈  LNoeM ) | 
						
							| 10 | 1 2 | unex | ⊢ ( 𝐴  ∪  𝐵 )  ∈  V | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ∪  𝐵 )  ∈  V ) | 
						
							| 12 |  | ssun1 | ⊢ 𝐴  ⊆  ( 𝐴  ∪  𝐵 ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  𝐴  ⊆  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝑍 )  =  ( Base ‘ 𝑍 ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝑋 )  =  ( Base ‘ 𝑋 ) | 
						
							| 16 |  | eqid | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) )  =  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) ) | 
						
							| 17 | 5 3 14 15 16 | pwssplit3 | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  V  ∧  𝐴  ⊆  ( 𝐴  ∪  𝐵 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) )  ∈  ( 𝑍  LMHom  𝑋 ) ) | 
						
							| 18 | 6 11 13 17 | syl3anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) )  ∈  ( 𝑍  LMHom  𝑋 ) ) | 
						
							| 19 |  | fvex | ⊢ ( 0g ‘ 𝑋 )  ∈  V | 
						
							| 20 | 16 | mptiniseg | ⊢ ( ( 0g ‘ 𝑋 )  ∈  V  →  ( ◡ ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) )  “  { ( 0g ‘ 𝑋 ) } )  =  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 0g ‘ 𝑋 ) } ) | 
						
							| 21 | 19 20 | ax-mp | ⊢ ( ◡ ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) )  “  { ( 0g ‘ 𝑋 ) } )  =  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 0g ‘ 𝑋 ) } | 
						
							| 22 |  | lmodgrp | ⊢ ( 𝑊  ∈  LMod  →  𝑊  ∈  Grp ) | 
						
							| 23 |  | grpmnd | ⊢ ( 𝑊  ∈  Grp  →  𝑊  ∈  Mnd ) | 
						
							| 24 | 6 22 23 | 3syl | ⊢ ( 𝜑  →  𝑊  ∈  Mnd ) | 
						
							| 25 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 26 | 3 25 | pws0g | ⊢ ( ( 𝑊  ∈  Mnd  ∧  𝐴  ∈  V )  →  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } )  =  ( 0g ‘ 𝑋 ) ) | 
						
							| 27 | 24 1 26 | sylancl | ⊢ ( 𝜑  →  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } )  =  ( 0g ‘ 𝑋 ) ) | 
						
							| 28 | 27 | eqcomd | ⊢ ( 𝜑  →  ( 0g ‘ 𝑋 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) ) | 
						
							| 29 | 28 | eqeq2d | ⊢ ( 𝜑  →  ( ( 𝑥  ↾  𝐴 )  =  ( 0g ‘ 𝑋 )  ↔  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) ) ) | 
						
							| 30 | 29 | rabbidv | ⊢ ( 𝜑  →  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 0g ‘ 𝑋 ) }  =  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) } ) | 
						
							| 31 | 21 30 | eqtrid | ⊢ ( 𝜑  →  ( ◡ ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) )  “  { ( 0g ‘ 𝑋 ) } )  =  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) } ) | 
						
							| 32 | 31 | oveq2d | ⊢ ( 𝜑  →  ( 𝑍  ↾s  ( ◡ ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) )  “  { ( 0g ‘ 𝑋 ) } ) )  =  ( 𝑍  ↾s  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) } ) ) | 
						
							| 33 |  | eqid | ⊢ { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) }  =  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) } | 
						
							| 34 |  | eqid | ⊢ ( 𝑦  ∈  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) }  ↦  ( 𝑦  ↾  𝐵 ) )  =  ( 𝑦  ∈  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) }  ↦  ( 𝑦  ↾  𝐵 ) ) | 
						
							| 35 |  | eqid | ⊢ ( 𝑍  ↾s  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) } )  =  ( 𝑍  ↾s  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) } ) | 
						
							| 36 | 5 14 25 33 34 3 4 35 | pwssplit4 | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  V  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( 𝑦  ∈  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) }  ↦  ( 𝑦  ↾  𝐵 ) )  ∈  ( ( 𝑍  ↾s  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) } )  LMIso  𝑌 ) ) | 
						
							| 37 | 6 11 7 36 | syl3anc | ⊢ ( 𝜑  →  ( 𝑦  ∈  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) }  ↦  ( 𝑦  ↾  𝐵 ) )  ∈  ( ( 𝑍  ↾s  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) } )  LMIso  𝑌 ) ) | 
						
							| 38 |  | brlmici | ⊢ ( ( 𝑦  ∈  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) }  ↦  ( 𝑦  ↾  𝐵 ) )  ∈  ( ( 𝑍  ↾s  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) } )  LMIso  𝑌 )  →  ( 𝑍  ↾s  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) } )  ≃𝑚  𝑌 ) | 
						
							| 39 |  | lnmlmic | ⊢ ( ( 𝑍  ↾s  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) } )  ≃𝑚  𝑌  →  ( ( 𝑍  ↾s  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) } )  ∈  LNoeM  ↔  𝑌  ∈  LNoeM ) ) | 
						
							| 40 | 37 38 39 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑍  ↾s  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) } )  ∈  LNoeM  ↔  𝑌  ∈  LNoeM ) ) | 
						
							| 41 | 9 40 | mpbird | ⊢ ( 𝜑  →  ( 𝑍  ↾s  { 𝑥  ∈  ( Base ‘ 𝑍 )  ∣  ( 𝑥  ↾  𝐴 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑊 ) } ) } )  ∈  LNoeM ) | 
						
							| 42 | 32 41 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑍  ↾s  ( ◡ ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) )  “  { ( 0g ‘ 𝑋 ) } ) )  ∈  LNoeM ) | 
						
							| 43 | 5 3 14 15 16 | pwssplit1 | ⊢ ( ( 𝑊  ∈  Mnd  ∧  ( 𝐴  ∪  𝐵 )  ∈  V  ∧  𝐴  ⊆  ( 𝐴  ∪  𝐵 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) ) : ( Base ‘ 𝑍 ) –onto→ ( Base ‘ 𝑋 ) ) | 
						
							| 44 | 24 11 13 43 | syl3anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) ) : ( Base ‘ 𝑍 ) –onto→ ( Base ‘ 𝑋 ) ) | 
						
							| 45 |  | forn | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) ) : ( Base ‘ 𝑍 ) –onto→ ( Base ‘ 𝑋 )  →  ran  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) )  =  ( Base ‘ 𝑋 ) ) | 
						
							| 46 | 44 45 | syl | ⊢ ( 𝜑  →  ran  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) )  =  ( Base ‘ 𝑋 ) ) | 
						
							| 47 | 46 | oveq2d | ⊢ ( 𝜑  →  ( 𝑋  ↾s  ran  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) ) )  =  ( 𝑋  ↾s  ( Base ‘ 𝑋 ) ) ) | 
						
							| 48 | 15 | ressid | ⊢ ( 𝑋  ∈  LNoeM  →  ( 𝑋  ↾s  ( Base ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 49 | 8 48 | syl | ⊢ ( 𝜑  →  ( 𝑋  ↾s  ( Base ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 50 | 47 49 | eqtrd | ⊢ ( 𝜑  →  ( 𝑋  ↾s  ran  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) ) )  =  𝑋 ) | 
						
							| 51 | 50 8 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑋  ↾s  ran  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) ) )  ∈  LNoeM ) | 
						
							| 52 |  | eqid | ⊢ ( 0g ‘ 𝑋 )  =  ( 0g ‘ 𝑋 ) | 
						
							| 53 |  | eqid | ⊢ ( ◡ ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) )  “  { ( 0g ‘ 𝑋 ) } )  =  ( ◡ ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) )  “  { ( 0g ‘ 𝑋 ) } ) | 
						
							| 54 |  | eqid | ⊢ ( 𝑍  ↾s  ( ◡ ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) )  “  { ( 0g ‘ 𝑋 ) } ) )  =  ( 𝑍  ↾s  ( ◡ ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) )  “  { ( 0g ‘ 𝑋 ) } ) ) | 
						
							| 55 |  | eqid | ⊢ ( 𝑋  ↾s  ran  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) ) )  =  ( 𝑋  ↾s  ran  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) ) ) | 
						
							| 56 | 52 53 54 55 | lmhmlnmsplit | ⊢ ( ( ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) )  ∈  ( 𝑍  LMHom  𝑋 )  ∧  ( 𝑍  ↾s  ( ◡ ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) )  “  { ( 0g ‘ 𝑋 ) } ) )  ∈  LNoeM  ∧  ( 𝑋  ↾s  ran  ( 𝑥  ∈  ( Base ‘ 𝑍 )  ↦  ( 𝑥  ↾  𝐴 ) ) )  ∈  LNoeM )  →  𝑍  ∈  LNoeM ) | 
						
							| 57 | 18 42 51 56 | syl3anc | ⊢ ( 𝜑  →  𝑍  ∈  LNoeM ) |