Metamath Proof Explorer


Theorem pwslnm

Description: Finite powers of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis pwslnm.y 𝑌 = ( 𝑊s 𝐼 )
Assertion pwslnm ( ( 𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin ) → 𝑌 ∈ LNoeM )

Proof

Step Hyp Ref Expression
1 pwslnm.y 𝑌 = ( 𝑊s 𝐼 )
2 oveq2 ( 𝑎 = ∅ → ( 𝑊s 𝑎 ) = ( 𝑊s ∅ ) )
3 2 eleq1d ( 𝑎 = ∅ → ( ( 𝑊s 𝑎 ) ∈ LNoeM ↔ ( 𝑊s ∅ ) ∈ LNoeM ) )
4 3 imbi2d ( 𝑎 = ∅ → ( ( 𝑊 ∈ LNoeM → ( 𝑊s 𝑎 ) ∈ LNoeM ) ↔ ( 𝑊 ∈ LNoeM → ( 𝑊s ∅ ) ∈ LNoeM ) ) )
5 oveq2 ( 𝑎 = 𝑏 → ( 𝑊s 𝑎 ) = ( 𝑊s 𝑏 ) )
6 5 eleq1d ( 𝑎 = 𝑏 → ( ( 𝑊s 𝑎 ) ∈ LNoeM ↔ ( 𝑊s 𝑏 ) ∈ LNoeM ) )
7 6 imbi2d ( 𝑎 = 𝑏 → ( ( 𝑊 ∈ LNoeM → ( 𝑊s 𝑎 ) ∈ LNoeM ) ↔ ( 𝑊 ∈ LNoeM → ( 𝑊s 𝑏 ) ∈ LNoeM ) ) )
8 oveq2 ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑊s 𝑎 ) = ( 𝑊s ( 𝑏 ∪ { 𝑐 } ) ) )
9 8 eleq1d ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑊s 𝑎 ) ∈ LNoeM ↔ ( 𝑊s ( 𝑏 ∪ { 𝑐 } ) ) ∈ LNoeM ) )
10 9 imbi2d ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑊 ∈ LNoeM → ( 𝑊s 𝑎 ) ∈ LNoeM ) ↔ ( 𝑊 ∈ LNoeM → ( 𝑊s ( 𝑏 ∪ { 𝑐 } ) ) ∈ LNoeM ) ) )
11 oveq2 ( 𝑎 = 𝐼 → ( 𝑊s 𝑎 ) = ( 𝑊s 𝐼 ) )
12 11 eleq1d ( 𝑎 = 𝐼 → ( ( 𝑊s 𝑎 ) ∈ LNoeM ↔ ( 𝑊s 𝐼 ) ∈ LNoeM ) )
13 12 imbi2d ( 𝑎 = 𝐼 → ( ( 𝑊 ∈ LNoeM → ( 𝑊s 𝑎 ) ∈ LNoeM ) ↔ ( 𝑊 ∈ LNoeM → ( 𝑊s 𝐼 ) ∈ LNoeM ) ) )
14 lnmlmod ( 𝑊 ∈ LNoeM → 𝑊 ∈ LMod )
15 eqid ( 𝑊s ∅ ) = ( 𝑊s ∅ )
16 15 pwslnmlem0 ( 𝑊 ∈ LMod → ( 𝑊s ∅ ) ∈ LNoeM )
17 14 16 syl ( 𝑊 ∈ LNoeM → ( 𝑊s ∅ ) ∈ LNoeM )
18 vex 𝑏 ∈ V
19 snex { 𝑐 } ∈ V
20 eqid ( 𝑊s 𝑏 ) = ( 𝑊s 𝑏 )
21 eqid ( 𝑊s { 𝑐 } ) = ( 𝑊s { 𝑐 } )
22 eqid ( 𝑊s ( 𝑏 ∪ { 𝑐 } ) ) = ( 𝑊s ( 𝑏 ∪ { 𝑐 } ) )
23 14 ad2antrl ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑊 ∈ LNoeM ∧ ( 𝑊s 𝑏 ) ∈ LNoeM ) ) → 𝑊 ∈ LMod )
24 disjsn ( ( 𝑏 ∩ { 𝑐 } ) = ∅ ↔ ¬ 𝑐𝑏 )
25 24 biimpri ( ¬ 𝑐𝑏 → ( 𝑏 ∩ { 𝑐 } ) = ∅ )
26 25 ad2antlr ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑊 ∈ LNoeM ∧ ( 𝑊s 𝑏 ) ∈ LNoeM ) ) → ( 𝑏 ∩ { 𝑐 } ) = ∅ )
27 simprr ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑊 ∈ LNoeM ∧ ( 𝑊s 𝑏 ) ∈ LNoeM ) ) → ( 𝑊s 𝑏 ) ∈ LNoeM )
28 21 pwslnmlem1 ( 𝑊 ∈ LNoeM → ( 𝑊s { 𝑐 } ) ∈ LNoeM )
29 28 ad2antrl ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑊 ∈ LNoeM ∧ ( 𝑊s 𝑏 ) ∈ LNoeM ) ) → ( 𝑊s { 𝑐 } ) ∈ LNoeM )
30 18 19 20 21 22 23 26 27 29 pwslnmlem2 ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑊 ∈ LNoeM ∧ ( 𝑊s 𝑏 ) ∈ LNoeM ) ) → ( 𝑊s ( 𝑏 ∪ { 𝑐 } ) ) ∈ LNoeM )
31 30 exp32 ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐𝑏 ) → ( 𝑊 ∈ LNoeM → ( ( 𝑊s 𝑏 ) ∈ LNoeM → ( 𝑊s ( 𝑏 ∪ { 𝑐 } ) ) ∈ LNoeM ) ) )
32 31 a2d ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐𝑏 ) → ( ( 𝑊 ∈ LNoeM → ( 𝑊s 𝑏 ) ∈ LNoeM ) → ( 𝑊 ∈ LNoeM → ( 𝑊s ( 𝑏 ∪ { 𝑐 } ) ) ∈ LNoeM ) ) )
33 4 7 10 13 17 32 findcard2s ( 𝐼 ∈ Fin → ( 𝑊 ∈ LNoeM → ( 𝑊s 𝐼 ) ∈ LNoeM ) )
34 33 impcom ( ( 𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin ) → ( 𝑊s 𝐼 ) ∈ LNoeM )
35 1 34 eqeltrid ( ( 𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin ) → 𝑌 ∈ LNoeM )