| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwslnm.y | ⊢ 𝑌  =  ( 𝑊  ↑s  𝐼 ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑎  =  ∅  →  ( 𝑊  ↑s  𝑎 )  =  ( 𝑊  ↑s  ∅ ) ) | 
						
							| 3 | 2 | eleq1d | ⊢ ( 𝑎  =  ∅  →  ( ( 𝑊  ↑s  𝑎 )  ∈  LNoeM  ↔  ( 𝑊  ↑s  ∅ )  ∈  LNoeM ) ) | 
						
							| 4 | 3 | imbi2d | ⊢ ( 𝑎  =  ∅  →  ( ( 𝑊  ∈  LNoeM  →  ( 𝑊  ↑s  𝑎 )  ∈  LNoeM )  ↔  ( 𝑊  ∈  LNoeM  →  ( 𝑊  ↑s  ∅ )  ∈  LNoeM ) ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑊  ↑s  𝑎 )  =  ( 𝑊  ↑s  𝑏 ) ) | 
						
							| 6 | 5 | eleq1d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑊  ↑s  𝑎 )  ∈  LNoeM  ↔  ( 𝑊  ↑s  𝑏 )  ∈  LNoeM ) ) | 
						
							| 7 | 6 | imbi2d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑊  ∈  LNoeM  →  ( 𝑊  ↑s  𝑎 )  ∈  LNoeM )  ↔  ( 𝑊  ∈  LNoeM  →  ( 𝑊  ↑s  𝑏 )  ∈  LNoeM ) ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( 𝑊  ↑s  𝑎 )  =  ( 𝑊  ↑s  ( 𝑏  ∪  { 𝑐 } ) ) ) | 
						
							| 9 | 8 | eleq1d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( ( 𝑊  ↑s  𝑎 )  ∈  LNoeM  ↔  ( 𝑊  ↑s  ( 𝑏  ∪  { 𝑐 } ) )  ∈  LNoeM ) ) | 
						
							| 10 | 9 | imbi2d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( ( 𝑊  ∈  LNoeM  →  ( 𝑊  ↑s  𝑎 )  ∈  LNoeM )  ↔  ( 𝑊  ∈  LNoeM  →  ( 𝑊  ↑s  ( 𝑏  ∪  { 𝑐 } ) )  ∈  LNoeM ) ) ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑎  =  𝐼  →  ( 𝑊  ↑s  𝑎 )  =  ( 𝑊  ↑s  𝐼 ) ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( 𝑎  =  𝐼  →  ( ( 𝑊  ↑s  𝑎 )  ∈  LNoeM  ↔  ( 𝑊  ↑s  𝐼 )  ∈  LNoeM ) ) | 
						
							| 13 | 12 | imbi2d | ⊢ ( 𝑎  =  𝐼  →  ( ( 𝑊  ∈  LNoeM  →  ( 𝑊  ↑s  𝑎 )  ∈  LNoeM )  ↔  ( 𝑊  ∈  LNoeM  →  ( 𝑊  ↑s  𝐼 )  ∈  LNoeM ) ) ) | 
						
							| 14 |  | lnmlmod | ⊢ ( 𝑊  ∈  LNoeM  →  𝑊  ∈  LMod ) | 
						
							| 15 |  | eqid | ⊢ ( 𝑊  ↑s  ∅ )  =  ( 𝑊  ↑s  ∅ ) | 
						
							| 16 | 15 | pwslnmlem0 | ⊢ ( 𝑊  ∈  LMod  →  ( 𝑊  ↑s  ∅ )  ∈  LNoeM ) | 
						
							| 17 | 14 16 | syl | ⊢ ( 𝑊  ∈  LNoeM  →  ( 𝑊  ↑s  ∅ )  ∈  LNoeM ) | 
						
							| 18 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 19 |  | vsnex | ⊢ { 𝑐 }  ∈  V | 
						
							| 20 |  | eqid | ⊢ ( 𝑊  ↑s  𝑏 )  =  ( 𝑊  ↑s  𝑏 ) | 
						
							| 21 |  | eqid | ⊢ ( 𝑊  ↑s  { 𝑐 } )  =  ( 𝑊  ↑s  { 𝑐 } ) | 
						
							| 22 |  | eqid | ⊢ ( 𝑊  ↑s  ( 𝑏  ∪  { 𝑐 } ) )  =  ( 𝑊  ↑s  ( 𝑏  ∪  { 𝑐 } ) ) | 
						
							| 23 | 14 | ad2antrl | ⊢ ( ( ( 𝑏  ∈  Fin  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑊  ∈  LNoeM  ∧  ( 𝑊  ↑s  𝑏 )  ∈  LNoeM ) )  →  𝑊  ∈  LMod ) | 
						
							| 24 |  | disjsn | ⊢ ( ( 𝑏  ∩  { 𝑐 } )  =  ∅  ↔  ¬  𝑐  ∈  𝑏 ) | 
						
							| 25 | 24 | biimpri | ⊢ ( ¬  𝑐  ∈  𝑏  →  ( 𝑏  ∩  { 𝑐 } )  =  ∅ ) | 
						
							| 26 | 25 | ad2antlr | ⊢ ( ( ( 𝑏  ∈  Fin  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑊  ∈  LNoeM  ∧  ( 𝑊  ↑s  𝑏 )  ∈  LNoeM ) )  →  ( 𝑏  ∩  { 𝑐 } )  =  ∅ ) | 
						
							| 27 |  | simprr | ⊢ ( ( ( 𝑏  ∈  Fin  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑊  ∈  LNoeM  ∧  ( 𝑊  ↑s  𝑏 )  ∈  LNoeM ) )  →  ( 𝑊  ↑s  𝑏 )  ∈  LNoeM ) | 
						
							| 28 | 21 | pwslnmlem1 | ⊢ ( 𝑊  ∈  LNoeM  →  ( 𝑊  ↑s  { 𝑐 } )  ∈  LNoeM ) | 
						
							| 29 | 28 | ad2antrl | ⊢ ( ( ( 𝑏  ∈  Fin  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑊  ∈  LNoeM  ∧  ( 𝑊  ↑s  𝑏 )  ∈  LNoeM ) )  →  ( 𝑊  ↑s  { 𝑐 } )  ∈  LNoeM ) | 
						
							| 30 | 18 19 20 21 22 23 26 27 29 | pwslnmlem2 | ⊢ ( ( ( 𝑏  ∈  Fin  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑊  ∈  LNoeM  ∧  ( 𝑊  ↑s  𝑏 )  ∈  LNoeM ) )  →  ( 𝑊  ↑s  ( 𝑏  ∪  { 𝑐 } ) )  ∈  LNoeM ) | 
						
							| 31 | 30 | exp32 | ⊢ ( ( 𝑏  ∈  Fin  ∧  ¬  𝑐  ∈  𝑏 )  →  ( 𝑊  ∈  LNoeM  →  ( ( 𝑊  ↑s  𝑏 )  ∈  LNoeM  →  ( 𝑊  ↑s  ( 𝑏  ∪  { 𝑐 } ) )  ∈  LNoeM ) ) ) | 
						
							| 32 | 31 | a2d | ⊢ ( ( 𝑏  ∈  Fin  ∧  ¬  𝑐  ∈  𝑏 )  →  ( ( 𝑊  ∈  LNoeM  →  ( 𝑊  ↑s  𝑏 )  ∈  LNoeM )  →  ( 𝑊  ∈  LNoeM  →  ( 𝑊  ↑s  ( 𝑏  ∪  { 𝑐 } ) )  ∈  LNoeM ) ) ) | 
						
							| 33 | 4 7 10 13 17 32 | findcard2s | ⊢ ( 𝐼  ∈  Fin  →  ( 𝑊  ∈  LNoeM  →  ( 𝑊  ↑s  𝐼 )  ∈  LNoeM ) ) | 
						
							| 34 | 33 | impcom | ⊢ ( ( 𝑊  ∈  LNoeM  ∧  𝐼  ∈  Fin )  →  ( 𝑊  ↑s  𝐼 )  ∈  LNoeM ) | 
						
							| 35 | 1 34 | eqeltrid | ⊢ ( ( 𝑊  ∈  LNoeM  ∧  𝐼  ∈  Fin )  →  𝑌  ∈  LNoeM ) |