| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwslnmlem1.y | ⊢ 𝑌  =  ( 𝑊  ↑s  { 𝑖 } ) | 
						
							| 2 |  | lnmlmod | ⊢ ( 𝑊  ∈  LNoeM  →  𝑊  ∈  LMod ) | 
						
							| 3 |  | vsnex | ⊢ { 𝑖 }  ∈  V | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( { 𝑖 }  ×  { 𝑥 } ) )  =  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( { 𝑖 }  ×  { 𝑥 } ) ) | 
						
							| 6 | 1 4 5 | pwsdiaglmhm | ⊢ ( ( 𝑊  ∈  LMod  ∧  { 𝑖 }  ∈  V )  →  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( { 𝑖 }  ×  { 𝑥 } ) )  ∈  ( 𝑊  LMHom  𝑌 ) ) | 
						
							| 7 | 2 3 6 | sylancl | ⊢ ( 𝑊  ∈  LNoeM  →  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( { 𝑖 }  ×  { 𝑥 } ) )  ∈  ( 𝑊  LMHom  𝑌 ) ) | 
						
							| 8 |  | id | ⊢ ( 𝑊  ∈  LNoeM  →  𝑊  ∈  LNoeM ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 10 | 1 4 5 9 | pwssnf1o | ⊢ ( ( 𝑊  ∈  LNoeM  ∧  𝑖  ∈  V )  →  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( { 𝑖 }  ×  { 𝑥 } ) ) : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) | 
						
							| 11 | 10 | elvd | ⊢ ( 𝑊  ∈  LNoeM  →  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( { 𝑖 }  ×  { 𝑥 } ) ) : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) | 
						
							| 12 |  | f1ofo | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( { 𝑖 }  ×  { 𝑥 } ) ) : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ 𝑌 )  →  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( { 𝑖 }  ×  { 𝑥 } ) ) : ( Base ‘ 𝑊 ) –onto→ ( Base ‘ 𝑌 ) ) | 
						
							| 13 |  | forn | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( { 𝑖 }  ×  { 𝑥 } ) ) : ( Base ‘ 𝑊 ) –onto→ ( Base ‘ 𝑌 )  →  ran  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( { 𝑖 }  ×  { 𝑥 } ) )  =  ( Base ‘ 𝑌 ) ) | 
						
							| 14 | 11 12 13 | 3syl | ⊢ ( 𝑊  ∈  LNoeM  →  ran  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( { 𝑖 }  ×  { 𝑥 } ) )  =  ( Base ‘ 𝑌 ) ) | 
						
							| 15 | 9 | lnmepi | ⊢ ( ( ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( { 𝑖 }  ×  { 𝑥 } ) )  ∈  ( 𝑊  LMHom  𝑌 )  ∧  𝑊  ∈  LNoeM  ∧  ran  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( { 𝑖 }  ×  { 𝑥 } ) )  =  ( Base ‘ 𝑌 ) )  →  𝑌  ∈  LNoeM ) | 
						
							| 16 | 7 8 14 15 | syl3anc | ⊢ ( 𝑊  ∈  LNoeM  →  𝑌  ∈  LNoeM ) |