| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwslnmlem0.y | ⊢ 𝑌  =  ( 𝑊  ↑s  ∅ ) | 
						
							| 2 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 3 | 1 | pwslmod | ⊢ ( ( 𝑊  ∈  LMod  ∧  ∅  ∈  V )  →  𝑌  ∈  LMod ) | 
						
							| 4 | 2 3 | mpan2 | ⊢ ( 𝑊  ∈  LMod  →  𝑌  ∈  LMod ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 6 | 1 5 | pwsbas | ⊢ ( ( 𝑊  ∈  LMod  ∧  ∅  ∈  V )  →  ( ( Base ‘ 𝑊 )  ↑m  ∅ )  =  ( Base ‘ 𝑌 ) ) | 
						
							| 7 | 2 6 | mpan2 | ⊢ ( 𝑊  ∈  LMod  →  ( ( Base ‘ 𝑊 )  ↑m  ∅ )  =  ( Base ‘ 𝑌 ) ) | 
						
							| 8 |  | fvex | ⊢ ( Base ‘ 𝑊 )  ∈  V | 
						
							| 9 |  | map0e | ⊢ ( ( Base ‘ 𝑊 )  ∈  V  →  ( ( Base ‘ 𝑊 )  ↑m  ∅ )  =  1o ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ( ( Base ‘ 𝑊 )  ↑m  ∅ )  =  1o | 
						
							| 11 |  | df1o2 | ⊢ 1o  =  { ∅ } | 
						
							| 12 | 10 11 | eqtri | ⊢ ( ( Base ‘ 𝑊 )  ↑m  ∅ )  =  { ∅ } | 
						
							| 13 |  | snfi | ⊢ { ∅ }  ∈  Fin | 
						
							| 14 | 12 13 | eqeltri | ⊢ ( ( Base ‘ 𝑊 )  ↑m  ∅ )  ∈  Fin | 
						
							| 15 | 7 14 | eqeltrrdi | ⊢ ( 𝑊  ∈  LMod  →  ( Base ‘ 𝑌 )  ∈  Fin ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 17 | 16 | filnm | ⊢ ( ( 𝑌  ∈  LMod  ∧  ( Base ‘ 𝑌 )  ∈  Fin )  →  𝑌  ∈  LNoeM ) | 
						
							| 18 | 4 15 17 | syl2anc | ⊢ ( 𝑊  ∈  LMod  →  𝑌  ∈  LNoeM ) |