| Step | Hyp | Ref | Expression | 
						
							| 1 |  | filnm.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐵  ∈  Fin )  →  𝑊  ∈  LMod ) | 
						
							| 3 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 4 | 1 3 | lssss | ⊢ ( 𝑎  ∈  ( LSubSp ‘ 𝑊 )  →  𝑎  ⊆  𝐵 ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝐵  ∈  Fin )  ∧  𝑎  ∈  ( LSubSp ‘ 𝑊 ) )  →  𝑎  ⊆  𝐵 ) | 
						
							| 6 |  | velpw | ⊢ ( 𝑎  ∈  𝒫  𝐵  ↔  𝑎  ⊆  𝐵 ) | 
						
							| 7 | 5 6 | sylibr | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝐵  ∈  Fin )  ∧  𝑎  ∈  ( LSubSp ‘ 𝑊 ) )  →  𝑎  ∈  𝒫  𝐵 ) | 
						
							| 8 |  | simplr | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝐵  ∈  Fin )  ∧  𝑎  ∈  ( LSubSp ‘ 𝑊 ) )  →  𝐵  ∈  Fin ) | 
						
							| 9 |  | ssfi | ⊢ ( ( 𝐵  ∈  Fin  ∧  𝑎  ⊆  𝐵 )  →  𝑎  ∈  Fin ) | 
						
							| 10 | 8 5 9 | syl2anc | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝐵  ∈  Fin )  ∧  𝑎  ∈  ( LSubSp ‘ 𝑊 ) )  →  𝑎  ∈  Fin ) | 
						
							| 11 | 7 10 | elind | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝐵  ∈  Fin )  ∧  𝑎  ∈  ( LSubSp ‘ 𝑊 ) )  →  𝑎  ∈  ( 𝒫  𝐵  ∩  Fin ) ) | 
						
							| 12 |  | eqid | ⊢ ( LSpan ‘ 𝑊 )  =  ( LSpan ‘ 𝑊 ) | 
						
							| 13 | 3 12 | lspid | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑎  ∈  ( LSubSp ‘ 𝑊 ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 )  =  𝑎 ) | 
						
							| 14 | 13 | adantlr | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝐵  ∈  Fin )  ∧  𝑎  ∈  ( LSubSp ‘ 𝑊 ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 )  =  𝑎 ) | 
						
							| 15 | 14 | eqcomd | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝐵  ∈  Fin )  ∧  𝑎  ∈  ( LSubSp ‘ 𝑊 ) )  →  𝑎  =  ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑏  =  𝑎  →  ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 )  =  ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ) | 
						
							| 17 | 16 | rspceeqv | ⊢ ( ( 𝑎  ∈  ( 𝒫  𝐵  ∩  Fin )  ∧  𝑎  =  ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) )  →  ∃ 𝑏  ∈  ( 𝒫  𝐵  ∩  Fin ) 𝑎  =  ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) ) | 
						
							| 18 | 11 15 17 | syl2anc | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝐵  ∈  Fin )  ∧  𝑎  ∈  ( LSubSp ‘ 𝑊 ) )  →  ∃ 𝑏  ∈  ( 𝒫  𝐵  ∩  Fin ) 𝑎  =  ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) ) | 
						
							| 19 | 18 | ralrimiva | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐵  ∈  Fin )  →  ∀ 𝑎  ∈  ( LSubSp ‘ 𝑊 ) ∃ 𝑏  ∈  ( 𝒫  𝐵  ∩  Fin ) 𝑎  =  ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) ) | 
						
							| 20 | 1 3 12 | islnm2 | ⊢ ( 𝑊  ∈  LNoeM  ↔  ( 𝑊  ∈  LMod  ∧  ∀ 𝑎  ∈  ( LSubSp ‘ 𝑊 ) ∃ 𝑏  ∈  ( 𝒫  𝐵  ∩  Fin ) 𝑎  =  ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) ) ) | 
						
							| 21 | 2 19 20 | sylanbrc | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐵  ∈  Fin )  →  𝑊  ∈  LNoeM ) |