| Step | Hyp | Ref | Expression | 
						
							| 1 |  | filnm.b |  |-  B = ( Base ` W ) | 
						
							| 2 |  | simpl |  |-  ( ( W e. LMod /\ B e. Fin ) -> W e. LMod ) | 
						
							| 3 |  | eqid |  |-  ( LSubSp ` W ) = ( LSubSp ` W ) | 
						
							| 4 | 1 3 | lssss |  |-  ( a e. ( LSubSp ` W ) -> a C_ B ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( W e. LMod /\ B e. Fin ) /\ a e. ( LSubSp ` W ) ) -> a C_ B ) | 
						
							| 6 |  | velpw |  |-  ( a e. ~P B <-> a C_ B ) | 
						
							| 7 | 5 6 | sylibr |  |-  ( ( ( W e. LMod /\ B e. Fin ) /\ a e. ( LSubSp ` W ) ) -> a e. ~P B ) | 
						
							| 8 |  | simplr |  |-  ( ( ( W e. LMod /\ B e. Fin ) /\ a e. ( LSubSp ` W ) ) -> B e. Fin ) | 
						
							| 9 |  | ssfi |  |-  ( ( B e. Fin /\ a C_ B ) -> a e. Fin ) | 
						
							| 10 | 8 5 9 | syl2anc |  |-  ( ( ( W e. LMod /\ B e. Fin ) /\ a e. ( LSubSp ` W ) ) -> a e. Fin ) | 
						
							| 11 | 7 10 | elind |  |-  ( ( ( W e. LMod /\ B e. Fin ) /\ a e. ( LSubSp ` W ) ) -> a e. ( ~P B i^i Fin ) ) | 
						
							| 12 |  | eqid |  |-  ( LSpan ` W ) = ( LSpan ` W ) | 
						
							| 13 | 3 12 | lspid |  |-  ( ( W e. LMod /\ a e. ( LSubSp ` W ) ) -> ( ( LSpan ` W ) ` a ) = a ) | 
						
							| 14 | 13 | adantlr |  |-  ( ( ( W e. LMod /\ B e. Fin ) /\ a e. ( LSubSp ` W ) ) -> ( ( LSpan ` W ) ` a ) = a ) | 
						
							| 15 | 14 | eqcomd |  |-  ( ( ( W e. LMod /\ B e. Fin ) /\ a e. ( LSubSp ` W ) ) -> a = ( ( LSpan ` W ) ` a ) ) | 
						
							| 16 |  | fveq2 |  |-  ( b = a -> ( ( LSpan ` W ) ` b ) = ( ( LSpan ` W ) ` a ) ) | 
						
							| 17 | 16 | rspceeqv |  |-  ( ( a e. ( ~P B i^i Fin ) /\ a = ( ( LSpan ` W ) ` a ) ) -> E. b e. ( ~P B i^i Fin ) a = ( ( LSpan ` W ) ` b ) ) | 
						
							| 18 | 11 15 17 | syl2anc |  |-  ( ( ( W e. LMod /\ B e. Fin ) /\ a e. ( LSubSp ` W ) ) -> E. b e. ( ~P B i^i Fin ) a = ( ( LSpan ` W ) ` b ) ) | 
						
							| 19 | 18 | ralrimiva |  |-  ( ( W e. LMod /\ B e. Fin ) -> A. a e. ( LSubSp ` W ) E. b e. ( ~P B i^i Fin ) a = ( ( LSpan ` W ) ` b ) ) | 
						
							| 20 | 1 3 12 | islnm2 |  |-  ( W e. LNoeM <-> ( W e. LMod /\ A. a e. ( LSubSp ` W ) E. b e. ( ~P B i^i Fin ) a = ( ( LSpan ` W ) ` b ) ) ) | 
						
							| 21 | 2 19 20 | sylanbrc |  |-  ( ( W e. LMod /\ B e. Fin ) -> W e. LNoeM ) |