Step |
Hyp |
Ref |
Expression |
1 |
|
filnm.b |
|- B = ( Base ` W ) |
2 |
|
simpl |
|- ( ( W e. LMod /\ B e. Fin ) -> W e. LMod ) |
3 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
4 |
1 3
|
lssss |
|- ( a e. ( LSubSp ` W ) -> a C_ B ) |
5 |
4
|
adantl |
|- ( ( ( W e. LMod /\ B e. Fin ) /\ a e. ( LSubSp ` W ) ) -> a C_ B ) |
6 |
|
velpw |
|- ( a e. ~P B <-> a C_ B ) |
7 |
5 6
|
sylibr |
|- ( ( ( W e. LMod /\ B e. Fin ) /\ a e. ( LSubSp ` W ) ) -> a e. ~P B ) |
8 |
|
simplr |
|- ( ( ( W e. LMod /\ B e. Fin ) /\ a e. ( LSubSp ` W ) ) -> B e. Fin ) |
9 |
|
ssfi |
|- ( ( B e. Fin /\ a C_ B ) -> a e. Fin ) |
10 |
8 5 9
|
syl2anc |
|- ( ( ( W e. LMod /\ B e. Fin ) /\ a e. ( LSubSp ` W ) ) -> a e. Fin ) |
11 |
7 10
|
elind |
|- ( ( ( W e. LMod /\ B e. Fin ) /\ a e. ( LSubSp ` W ) ) -> a e. ( ~P B i^i Fin ) ) |
12 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
13 |
3 12
|
lspid |
|- ( ( W e. LMod /\ a e. ( LSubSp ` W ) ) -> ( ( LSpan ` W ) ` a ) = a ) |
14 |
13
|
adantlr |
|- ( ( ( W e. LMod /\ B e. Fin ) /\ a e. ( LSubSp ` W ) ) -> ( ( LSpan ` W ) ` a ) = a ) |
15 |
14
|
eqcomd |
|- ( ( ( W e. LMod /\ B e. Fin ) /\ a e. ( LSubSp ` W ) ) -> a = ( ( LSpan ` W ) ` a ) ) |
16 |
|
fveq2 |
|- ( b = a -> ( ( LSpan ` W ) ` b ) = ( ( LSpan ` W ) ` a ) ) |
17 |
16
|
rspceeqv |
|- ( ( a e. ( ~P B i^i Fin ) /\ a = ( ( LSpan ` W ) ` a ) ) -> E. b e. ( ~P B i^i Fin ) a = ( ( LSpan ` W ) ` b ) ) |
18 |
11 15 17
|
syl2anc |
|- ( ( ( W e. LMod /\ B e. Fin ) /\ a e. ( LSubSp ` W ) ) -> E. b e. ( ~P B i^i Fin ) a = ( ( LSpan ` W ) ` b ) ) |
19 |
18
|
ralrimiva |
|- ( ( W e. LMod /\ B e. Fin ) -> A. a e. ( LSubSp ` W ) E. b e. ( ~P B i^i Fin ) a = ( ( LSpan ` W ) ` b ) ) |
20 |
1 3 12
|
islnm2 |
|- ( W e. LNoeM <-> ( W e. LMod /\ A. a e. ( LSubSp ` W ) E. b e. ( ~P B i^i Fin ) a = ( ( LSpan ` W ) ` b ) ) ) |
21 |
2 19 20
|
sylanbrc |
|- ( ( W e. LMod /\ B e. Fin ) -> W e. LNoeM ) |