| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwslnmlem0.y |  |-  Y = ( W ^s (/) ) | 
						
							| 2 |  | 0ex |  |-  (/) e. _V | 
						
							| 3 | 1 | pwslmod |  |-  ( ( W e. LMod /\ (/) e. _V ) -> Y e. LMod ) | 
						
							| 4 | 2 3 | mpan2 |  |-  ( W e. LMod -> Y e. LMod ) | 
						
							| 5 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 6 | 1 5 | pwsbas |  |-  ( ( W e. LMod /\ (/) e. _V ) -> ( ( Base ` W ) ^m (/) ) = ( Base ` Y ) ) | 
						
							| 7 | 2 6 | mpan2 |  |-  ( W e. LMod -> ( ( Base ` W ) ^m (/) ) = ( Base ` Y ) ) | 
						
							| 8 |  | fvex |  |-  ( Base ` W ) e. _V | 
						
							| 9 |  | map0e |  |-  ( ( Base ` W ) e. _V -> ( ( Base ` W ) ^m (/) ) = 1o ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( ( Base ` W ) ^m (/) ) = 1o | 
						
							| 11 |  | df1o2 |  |-  1o = { (/) } | 
						
							| 12 | 10 11 | eqtri |  |-  ( ( Base ` W ) ^m (/) ) = { (/) } | 
						
							| 13 |  | snfi |  |-  { (/) } e. Fin | 
						
							| 14 | 12 13 | eqeltri |  |-  ( ( Base ` W ) ^m (/) ) e. Fin | 
						
							| 15 | 7 14 | eqeltrrdi |  |-  ( W e. LMod -> ( Base ` Y ) e. Fin ) | 
						
							| 16 |  | eqid |  |-  ( Base ` Y ) = ( Base ` Y ) | 
						
							| 17 | 16 | filnm |  |-  ( ( Y e. LMod /\ ( Base ` Y ) e. Fin ) -> Y e. LNoeM ) | 
						
							| 18 | 4 15 17 | syl2anc |  |-  ( W e. LMod -> Y e. LNoeM ) |