Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Addenda for structure powers
pwslnmlem0
Next ⟩
pwslnmlem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
pwslnmlem0
Description:
Zeroeth powers are Noetherian.
(Contributed by
Stefan O'Rear
, 24-Jan-2015)
Ref
Expression
Hypothesis
pwslnmlem0.y
⊢
Y
=
W
↑
𝑠
∅
Assertion
pwslnmlem0
⊢
W
∈
LMod
→
Y
∈
LNoeM
Proof
Step
Hyp
Ref
Expression
1
pwslnmlem0.y
⊢
Y
=
W
↑
𝑠
∅
2
0ex
⊢
∅
∈
V
3
1
pwslmod
⊢
W
∈
LMod
∧
∅
∈
V
→
Y
∈
LMod
4
2
3
mpan2
⊢
W
∈
LMod
→
Y
∈
LMod
5
eqid
⊢
Base
W
=
Base
W
6
1
5
pwsbas
⊢
W
∈
LMod
∧
∅
∈
V
→
Base
W
∅
=
Base
Y
7
2
6
mpan2
⊢
W
∈
LMod
→
Base
W
∅
=
Base
Y
8
fvex
⊢
Base
W
∈
V
9
map0e
⊢
Base
W
∈
V
→
Base
W
∅
=
1
𝑜
10
8
9
ax-mp
⊢
Base
W
∅
=
1
𝑜
11
df1o2
⊢
1
𝑜
=
∅
12
10
11
eqtri
⊢
Base
W
∅
=
∅
13
snfi
⊢
∅
∈
Fin
14
12
13
eqeltri
⊢
Base
W
∅
∈
Fin
15
7
14
eqeltrrdi
⊢
W
∈
LMod
→
Base
Y
∈
Fin
16
eqid
⊢
Base
Y
=
Base
Y
17
16
filnm
⊢
Y
∈
LMod
∧
Base
Y
∈
Fin
→
Y
∈
LNoeM
18
4
15
17
syl2anc
⊢
W
∈
LMod
→
Y
∈
LNoeM