| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwssplit4.e | ⊢ 𝐸  =  ( 𝑅  ↑s  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 2 |  | pwssplit4.g | ⊢ 𝐺  =  ( Base ‘ 𝐸 ) | 
						
							| 3 |  | pwssplit4.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | pwssplit4.k | ⊢ 𝐾  =  { 𝑦  ∈  𝐺  ∣  ( 𝑦  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) } | 
						
							| 5 |  | pwssplit4.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑥  ↾  𝐵 ) ) | 
						
							| 6 |  | pwssplit4.c | ⊢ 𝐶  =  ( 𝑅  ↑s  𝐴 ) | 
						
							| 7 |  | pwssplit4.d | ⊢ 𝐷  =  ( 𝑅  ↑s  𝐵 ) | 
						
							| 8 |  | pwssplit4.l | ⊢ 𝐿  =  ( 𝐸  ↾s  𝐾 ) | 
						
							| 9 |  | ssrab2 | ⊢ { 𝑦  ∈  𝐺  ∣  ( 𝑦  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) }  ⊆  𝐺 | 
						
							| 10 | 4 9 | eqsstri | ⊢ 𝐾  ⊆  𝐺 | 
						
							| 11 |  | resmpt | ⊢ ( 𝐾  ⊆  𝐺  →  ( ( 𝑥  ∈  𝐺  ↦  ( 𝑥  ↾  𝐵 ) )  ↾  𝐾 )  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑥  ↾  𝐵 ) ) ) | 
						
							| 12 | 10 11 | ax-mp | ⊢ ( ( 𝑥  ∈  𝐺  ↦  ( 𝑥  ↾  𝐵 ) )  ↾  𝐾 )  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑥  ↾  𝐵 ) ) | 
						
							| 13 | 5 12 | eqtr4i | ⊢ 𝐹  =  ( ( 𝑥  ∈  𝐺  ↦  ( 𝑥  ↾  𝐵 ) )  ↾  𝐾 ) | 
						
							| 14 |  | ssun2 | ⊢ 𝐵  ⊆  ( 𝐴  ∪  𝐵 ) | 
						
							| 15 | 14 | a1i | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  𝐵  ⊆  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝐷 )  =  ( Base ‘ 𝐷 ) | 
						
							| 17 |  | eqid | ⊢ ( 𝑥  ∈  𝐺  ↦  ( 𝑥  ↾  𝐵 ) )  =  ( 𝑥  ∈  𝐺  ↦  ( 𝑥  ↾  𝐵 ) ) | 
						
							| 18 | 1 7 2 16 17 | pwssplit3 | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  𝐵  ⊆  ( 𝐴  ∪  𝐵 ) )  →  ( 𝑥  ∈  𝐺  ↦  ( 𝑥  ↾  𝐵 ) )  ∈  ( 𝐸  LMHom  𝐷 ) ) | 
						
							| 19 | 15 18 | syld3an3 | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( 𝑥  ∈  𝐺  ↦  ( 𝑥  ↾  𝐵 ) )  ∈  ( 𝐸  LMHom  𝐷 ) ) | 
						
							| 20 |  | simp1 | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  𝑅  ∈  LMod ) | 
						
							| 21 |  | lmodgrp | ⊢ ( 𝑅  ∈  LMod  →  𝑅  ∈  Grp ) | 
						
							| 22 |  | grpmnd | ⊢ ( 𝑅  ∈  Grp  →  𝑅  ∈  Mnd ) | 
						
							| 23 | 20 21 22 | 3syl | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  𝑅  ∈  Mnd ) | 
						
							| 24 |  | ssun1 | ⊢ 𝐴  ⊆  ( 𝐴  ∪  𝐵 ) | 
						
							| 25 |  | ssexg | ⊢ ( ( 𝐴  ⊆  ( 𝐴  ∪  𝐵 )  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉 )  →  𝐴  ∈  V ) | 
						
							| 26 | 24 25 | mpan | ⊢ ( ( 𝐴  ∪  𝐵 )  ∈  𝑉  →  𝐴  ∈  V ) | 
						
							| 27 | 26 | 3ad2ant2 | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  𝐴  ∈  V ) | 
						
							| 28 | 6 3 | pws0g | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐴  ∈  V )  →  ( 𝐴  ×  {  0  } )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 29 | 23 27 28 | syl2anc | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( 𝐴  ×  {  0  } )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 30 | 29 | eqeq2d | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ( 𝑦  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } )  ↔  ( 𝑦  ↾  𝐴 )  =  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 31 | 30 | rabbidv | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  { 𝑦  ∈  𝐺  ∣  ( 𝑦  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) }  =  { 𝑦  ∈  𝐺  ∣  ( 𝑦  ↾  𝐴 )  =  ( 0g ‘ 𝐶 ) } ) | 
						
							| 32 | 4 31 | eqtrid | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  𝐾  =  { 𝑦  ∈  𝐺  ∣  ( 𝑦  ↾  𝐴 )  =  ( 0g ‘ 𝐶 ) } ) | 
						
							| 33 | 24 | a1i | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  𝐴  ⊆  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 34 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 35 |  | eqid | ⊢ ( 𝑦  ∈  𝐺  ↦  ( 𝑦  ↾  𝐴 ) )  =  ( 𝑦  ∈  𝐺  ↦  ( 𝑦  ↾  𝐴 ) ) | 
						
							| 36 | 1 6 2 34 35 | pwssplit3 | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  𝐴  ⊆  ( 𝐴  ∪  𝐵 ) )  →  ( 𝑦  ∈  𝐺  ↦  ( 𝑦  ↾  𝐴 ) )  ∈  ( 𝐸  LMHom  𝐶 ) ) | 
						
							| 37 | 33 36 | syld3an3 | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( 𝑦  ∈  𝐺  ↦  ( 𝑦  ↾  𝐴 ) )  ∈  ( 𝐸  LMHom  𝐶 ) ) | 
						
							| 38 |  | fvex | ⊢ ( 0g ‘ 𝐶 )  ∈  V | 
						
							| 39 | 35 | mptiniseg | ⊢ ( ( 0g ‘ 𝐶 )  ∈  V  →  ( ◡ ( 𝑦  ∈  𝐺  ↦  ( 𝑦  ↾  𝐴 ) )  “  { ( 0g ‘ 𝐶 ) } )  =  { 𝑦  ∈  𝐺  ∣  ( 𝑦  ↾  𝐴 )  =  ( 0g ‘ 𝐶 ) } ) | 
						
							| 40 | 38 39 | ax-mp | ⊢ ( ◡ ( 𝑦  ∈  𝐺  ↦  ( 𝑦  ↾  𝐴 ) )  “  { ( 0g ‘ 𝐶 ) } )  =  { 𝑦  ∈  𝐺  ∣  ( 𝑦  ↾  𝐴 )  =  ( 0g ‘ 𝐶 ) } | 
						
							| 41 | 40 | eqcomi | ⊢ { 𝑦  ∈  𝐺  ∣  ( 𝑦  ↾  𝐴 )  =  ( 0g ‘ 𝐶 ) }  =  ( ◡ ( 𝑦  ∈  𝐺  ↦  ( 𝑦  ↾  𝐴 ) )  “  { ( 0g ‘ 𝐶 ) } ) | 
						
							| 42 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 43 |  | eqid | ⊢ ( LSubSp ‘ 𝐸 )  =  ( LSubSp ‘ 𝐸 ) | 
						
							| 44 | 41 42 43 | lmhmkerlss | ⊢ ( ( 𝑦  ∈  𝐺  ↦  ( 𝑦  ↾  𝐴 ) )  ∈  ( 𝐸  LMHom  𝐶 )  →  { 𝑦  ∈  𝐺  ∣  ( 𝑦  ↾  𝐴 )  =  ( 0g ‘ 𝐶 ) }  ∈  ( LSubSp ‘ 𝐸 ) ) | 
						
							| 45 | 37 44 | syl | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  { 𝑦  ∈  𝐺  ∣  ( 𝑦  ↾  𝐴 )  =  ( 0g ‘ 𝐶 ) }  ∈  ( LSubSp ‘ 𝐸 ) ) | 
						
							| 46 | 32 45 | eqeltrd | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  𝐾  ∈  ( LSubSp ‘ 𝐸 ) ) | 
						
							| 47 | 43 8 | reslmhm | ⊢ ( ( ( 𝑥  ∈  𝐺  ↦  ( 𝑥  ↾  𝐵 ) )  ∈  ( 𝐸  LMHom  𝐷 )  ∧  𝐾  ∈  ( LSubSp ‘ 𝐸 ) )  →  ( ( 𝑥  ∈  𝐺  ↦  ( 𝑥  ↾  𝐵 ) )  ↾  𝐾 )  ∈  ( 𝐿  LMHom  𝐷 ) ) | 
						
							| 48 | 19 46 47 | syl2anc | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ( 𝑥  ∈  𝐺  ↦  ( 𝑥  ↾  𝐵 ) )  ↾  𝐾 )  ∈  ( 𝐿  LMHom  𝐷 ) ) | 
						
							| 49 | 13 48 | eqeltrid | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  𝐹  ∈  ( 𝐿  LMHom  𝐷 ) ) | 
						
							| 50 | 5 | fvtresfn | ⊢ ( 𝑎  ∈  𝐾  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝑎  ↾  𝐵 ) ) | 
						
							| 51 |  | ssexg | ⊢ ( ( 𝐵  ⊆  ( 𝐴  ∪  𝐵 )  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉 )  →  𝐵  ∈  V ) | 
						
							| 52 | 14 51 | mpan | ⊢ ( ( 𝐴  ∪  𝐵 )  ∈  𝑉  →  𝐵  ∈  V ) | 
						
							| 53 | 52 | 3ad2ant2 | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  𝐵  ∈  V ) | 
						
							| 54 | 7 3 | pws0g | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐵  ∈  V )  →  ( 𝐵  ×  {  0  } )  =  ( 0g ‘ 𝐷 ) ) | 
						
							| 55 | 23 53 54 | syl2anc | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( 𝐵  ×  {  0  } )  =  ( 0g ‘ 𝐷 ) ) | 
						
							| 56 | 55 | eqcomd | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( 0g ‘ 𝐷 )  =  ( 𝐵  ×  {  0  } ) ) | 
						
							| 57 | 50 56 | eqeqan12rd | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  𝐾 )  →  ( ( 𝐹 ‘ 𝑎 )  =  ( 0g ‘ 𝐷 )  ↔  ( 𝑎  ↾  𝐵 )  =  ( 𝐵  ×  {  0  } ) ) ) | 
						
							| 58 |  | reseq1 | ⊢ ( 𝑦  =  𝑎  →  ( 𝑦  ↾  𝐴 )  =  ( 𝑎  ↾  𝐴 ) ) | 
						
							| 59 | 58 | eqeq1d | ⊢ ( 𝑦  =  𝑎  →  ( ( 𝑦  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } )  ↔  ( 𝑎  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) ) ) | 
						
							| 60 | 59 4 | elrab2 | ⊢ ( 𝑎  ∈  𝐾  ↔  ( 𝑎  ∈  𝐺  ∧  ( 𝑎  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) ) ) | 
						
							| 61 |  | uneq12 | ⊢ ( ( ( 𝑎  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } )  ∧  ( 𝑎  ↾  𝐵 )  =  ( 𝐵  ×  {  0  } ) )  →  ( ( 𝑎  ↾  𝐴 )  ∪  ( 𝑎  ↾  𝐵 ) )  =  ( ( 𝐴  ×  {  0  } )  ∪  ( 𝐵  ×  {  0  } ) ) ) | 
						
							| 62 |  | resundi | ⊢ ( 𝑎  ↾  ( 𝐴  ∪  𝐵 ) )  =  ( ( 𝑎  ↾  𝐴 )  ∪  ( 𝑎  ↾  𝐵 ) ) | 
						
							| 63 |  | xpundir | ⊢ ( ( 𝐴  ∪  𝐵 )  ×  {  0  } )  =  ( ( 𝐴  ×  {  0  } )  ∪  ( 𝐵  ×  {  0  } ) ) | 
						
							| 64 | 61 62 63 | 3eqtr4g | ⊢ ( ( ( 𝑎  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } )  ∧  ( 𝑎  ↾  𝐵 )  =  ( 𝐵  ×  {  0  } ) )  →  ( 𝑎  ↾  ( 𝐴  ∪  𝐵 ) )  =  ( ( 𝐴  ∪  𝐵 )  ×  {  0  } ) ) | 
						
							| 65 | 64 | adantll | ⊢ ( ( ( 𝑎  ∈  𝐺  ∧  ( 𝑎  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) )  ∧  ( 𝑎  ↾  𝐵 )  =  ( 𝐵  ×  {  0  } ) )  →  ( 𝑎  ↾  ( 𝐴  ∪  𝐵 ) )  =  ( ( 𝐴  ∪  𝐵 )  ×  {  0  } ) ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  ( ( 𝑎  ∈  𝐺  ∧  ( 𝑎  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) )  ∧  ( 𝑎  ↾  𝐵 )  =  ( 𝐵  ×  {  0  } ) ) )  →  ( 𝑎  ↾  ( 𝐴  ∪  𝐵 ) )  =  ( ( 𝐴  ∪  𝐵 )  ×  {  0  } ) ) | 
						
							| 67 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 68 |  | simpl1 | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  ( ( 𝑎  ∈  𝐺  ∧  ( 𝑎  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) )  ∧  ( 𝑎  ↾  𝐵 )  =  ( 𝐵  ×  {  0  } ) ) )  →  𝑅  ∈  LMod ) | 
						
							| 69 |  | simp2 | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( 𝐴  ∪  𝐵 )  ∈  𝑉 ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  ( ( 𝑎  ∈  𝐺  ∧  ( 𝑎  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) )  ∧  ( 𝑎  ↾  𝐵 )  =  ( 𝐵  ×  {  0  } ) ) )  →  ( 𝐴  ∪  𝐵 )  ∈  𝑉 ) | 
						
							| 71 |  | simprll | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  ( ( 𝑎  ∈  𝐺  ∧  ( 𝑎  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) )  ∧  ( 𝑎  ↾  𝐵 )  =  ( 𝐵  ×  {  0  } ) ) )  →  𝑎  ∈  𝐺 ) | 
						
							| 72 | 1 67 2 68 70 71 | pwselbas | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  ( ( 𝑎  ∈  𝐺  ∧  ( 𝑎  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) )  ∧  ( 𝑎  ↾  𝐵 )  =  ( 𝐵  ×  {  0  } ) ) )  →  𝑎 : ( 𝐴  ∪  𝐵 ) ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 73 |  | ffn | ⊢ ( 𝑎 : ( 𝐴  ∪  𝐵 ) ⟶ ( Base ‘ 𝑅 )  →  𝑎  Fn  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 74 |  | fnresdm | ⊢ ( 𝑎  Fn  ( 𝐴  ∪  𝐵 )  →  ( 𝑎  ↾  ( 𝐴  ∪  𝐵 ) )  =  𝑎 ) | 
						
							| 75 | 72 73 74 | 3syl | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  ( ( 𝑎  ∈  𝐺  ∧  ( 𝑎  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) )  ∧  ( 𝑎  ↾  𝐵 )  =  ( 𝐵  ×  {  0  } ) ) )  →  ( 𝑎  ↾  ( 𝐴  ∪  𝐵 ) )  =  𝑎 ) | 
						
							| 76 | 1 3 | pws0g | ⊢ ( ( 𝑅  ∈  Mnd  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉 )  →  ( ( 𝐴  ∪  𝐵 )  ×  {  0  } )  =  ( 0g ‘ 𝐸 ) ) | 
						
							| 77 | 23 69 76 | syl2anc | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ( 𝐴  ∪  𝐵 )  ×  {  0  } )  =  ( 0g ‘ 𝐸 ) ) | 
						
							| 78 | 1 | pwslmod | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉 )  →  𝐸  ∈  LMod ) | 
						
							| 79 | 78 | 3adant3 | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  𝐸  ∈  LMod ) | 
						
							| 80 | 43 | lsssubg | ⊢ ( ( 𝐸  ∈  LMod  ∧  𝐾  ∈  ( LSubSp ‘ 𝐸 ) )  →  𝐾  ∈  ( SubGrp ‘ 𝐸 ) ) | 
						
							| 81 | 79 46 80 | syl2anc | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  𝐾  ∈  ( SubGrp ‘ 𝐸 ) ) | 
						
							| 82 |  | eqid | ⊢ ( 0g ‘ 𝐸 )  =  ( 0g ‘ 𝐸 ) | 
						
							| 83 | 8 82 | subg0 | ⊢ ( 𝐾  ∈  ( SubGrp ‘ 𝐸 )  →  ( 0g ‘ 𝐸 )  =  ( 0g ‘ 𝐿 ) ) | 
						
							| 84 | 81 83 | syl | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( 0g ‘ 𝐸 )  =  ( 0g ‘ 𝐿 ) ) | 
						
							| 85 | 77 84 | eqtrd | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ( 𝐴  ∪  𝐵 )  ×  {  0  } )  =  ( 0g ‘ 𝐿 ) ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  ( ( 𝑎  ∈  𝐺  ∧  ( 𝑎  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) )  ∧  ( 𝑎  ↾  𝐵 )  =  ( 𝐵  ×  {  0  } ) ) )  →  ( ( 𝐴  ∪  𝐵 )  ×  {  0  } )  =  ( 0g ‘ 𝐿 ) ) | 
						
							| 87 | 66 75 86 | 3eqtr3d | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  ( ( 𝑎  ∈  𝐺  ∧  ( 𝑎  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) )  ∧  ( 𝑎  ↾  𝐵 )  =  ( 𝐵  ×  {  0  } ) ) )  →  𝑎  =  ( 0g ‘ 𝐿 ) ) | 
						
							| 88 | 87 | exp32 | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ( 𝑎  ∈  𝐺  ∧  ( 𝑎  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) )  →  ( ( 𝑎  ↾  𝐵 )  =  ( 𝐵  ×  {  0  } )  →  𝑎  =  ( 0g ‘ 𝐿 ) ) ) ) | 
						
							| 89 | 60 88 | biimtrid | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( 𝑎  ∈  𝐾  →  ( ( 𝑎  ↾  𝐵 )  =  ( 𝐵  ×  {  0  } )  →  𝑎  =  ( 0g ‘ 𝐿 ) ) ) ) | 
						
							| 90 | 89 | imp | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  𝐾 )  →  ( ( 𝑎  ↾  𝐵 )  =  ( 𝐵  ×  {  0  } )  →  𝑎  =  ( 0g ‘ 𝐿 ) ) ) | 
						
							| 91 | 57 90 | sylbid | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  𝐾 )  →  ( ( 𝐹 ‘ 𝑎 )  =  ( 0g ‘ 𝐷 )  →  𝑎  =  ( 0g ‘ 𝐿 ) ) ) | 
						
							| 92 | 91 | ralrimiva | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ∀ 𝑎  ∈  𝐾 ( ( 𝐹 ‘ 𝑎 )  =  ( 0g ‘ 𝐷 )  →  𝑎  =  ( 0g ‘ 𝐿 ) ) ) | 
						
							| 93 |  | lmghm | ⊢ ( 𝐹  ∈  ( 𝐿  LMHom  𝐷 )  →  𝐹  ∈  ( 𝐿  GrpHom  𝐷 ) ) | 
						
							| 94 | 8 2 | ressbas2 | ⊢ ( 𝐾  ⊆  𝐺  →  𝐾  =  ( Base ‘ 𝐿 ) ) | 
						
							| 95 | 10 94 | ax-mp | ⊢ 𝐾  =  ( Base ‘ 𝐿 ) | 
						
							| 96 |  | eqid | ⊢ ( 0g ‘ 𝐿 )  =  ( 0g ‘ 𝐿 ) | 
						
							| 97 |  | eqid | ⊢ ( 0g ‘ 𝐷 )  =  ( 0g ‘ 𝐷 ) | 
						
							| 98 | 95 16 96 97 | ghmf1 | ⊢ ( 𝐹  ∈  ( 𝐿  GrpHom  𝐷 )  →  ( 𝐹 : 𝐾 –1-1→ ( Base ‘ 𝐷 )  ↔  ∀ 𝑎  ∈  𝐾 ( ( 𝐹 ‘ 𝑎 )  =  ( 0g ‘ 𝐷 )  →  𝑎  =  ( 0g ‘ 𝐿 ) ) ) ) | 
						
							| 99 | 49 93 98 | 3syl | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( 𝐹 : 𝐾 –1-1→ ( Base ‘ 𝐷 )  ↔  ∀ 𝑎  ∈  𝐾 ( ( 𝐹 ‘ 𝑎 )  =  ( 0g ‘ 𝐷 )  →  𝑎  =  ( 0g ‘ 𝐿 ) ) ) ) | 
						
							| 100 | 92 99 | mpbird | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  𝐹 : 𝐾 –1-1→ ( Base ‘ 𝐷 ) ) | 
						
							| 101 |  | eqid | ⊢ ( Base ‘ 𝐿 )  =  ( Base ‘ 𝐿 ) | 
						
							| 102 | 101 16 | lmhmf | ⊢ ( 𝐹  ∈  ( 𝐿  LMHom  𝐷 )  →  𝐹 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝐷 ) ) | 
						
							| 103 |  | frn | ⊢ ( 𝐹 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝐷 )  →  ran  𝐹  ⊆  ( Base ‘ 𝐷 ) ) | 
						
							| 104 | 49 102 103 | 3syl | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ran  𝐹  ⊆  ( Base ‘ 𝐷 ) ) | 
						
							| 105 |  | reseq1 | ⊢ ( 𝑥  =  ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  →  ( 𝑥  ↾  𝐵 )  =  ( ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  ↾  𝐵 ) ) | 
						
							| 106 | 7 67 16 | pwselbasb | ⊢ ( ( 𝑅  ∈  LMod  ∧  𝐵  ∈  V )  →  ( 𝑎  ∈  ( Base ‘ 𝐷 )  ↔  𝑎 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 107 | 20 53 106 | syl2anc | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( 𝑎  ∈  ( Base ‘ 𝐷 )  ↔  𝑎 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 108 | 107 | biimpa | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  𝑎 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 109 | 3 | fvexi | ⊢  0   ∈  V | 
						
							| 110 | 109 | fconst | ⊢ ( 𝐴  ×  {  0  } ) : 𝐴 ⟶ {  0  } | 
						
							| 111 | 110 | a1i | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( 𝐴  ×  {  0  } ) : 𝐴 ⟶ {  0  } ) | 
						
							| 112 | 23 | adantr | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  𝑅  ∈  Mnd ) | 
						
							| 113 | 67 3 | mndidcl | ⊢ ( 𝑅  ∈  Mnd  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 114 | 112 113 | syl | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 115 | 114 | snssd | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  {  0  }  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 116 | 111 115 | fssd | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( 𝐴  ×  {  0  } ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 117 |  | incom | ⊢ ( 𝐵  ∩  𝐴 )  =  ( 𝐴  ∩  𝐵 ) | 
						
							| 118 |  | simp3 | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( 𝐴  ∩  𝐵 )  =  ∅ ) | 
						
							| 119 | 117 118 | eqtrid | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( 𝐵  ∩  𝐴 )  =  ∅ ) | 
						
							| 120 | 119 | adantr | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( 𝐵  ∩  𝐴 )  =  ∅ ) | 
						
							| 121 |  | fun | ⊢ ( ( ( 𝑎 : 𝐵 ⟶ ( Base ‘ 𝑅 )  ∧  ( 𝐴  ×  {  0  } ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) )  ∧  ( 𝐵  ∩  𝐴 )  =  ∅ )  →  ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) ) : ( 𝐵  ∪  𝐴 ) ⟶ ( ( Base ‘ 𝑅 )  ∪  ( Base ‘ 𝑅 ) ) ) | 
						
							| 122 | 108 116 120 121 | syl21anc | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) ) : ( 𝐵  ∪  𝐴 ) ⟶ ( ( Base ‘ 𝑅 )  ∪  ( Base ‘ 𝑅 ) ) ) | 
						
							| 123 |  | uncom | ⊢ ( 𝐵  ∪  𝐴 )  =  ( 𝐴  ∪  𝐵 ) | 
						
							| 124 |  | unidm | ⊢ ( ( Base ‘ 𝑅 )  ∪  ( Base ‘ 𝑅 ) )  =  ( Base ‘ 𝑅 ) | 
						
							| 125 | 123 124 | feq23i | ⊢ ( ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) ) : ( 𝐵  ∪  𝐴 ) ⟶ ( ( Base ‘ 𝑅 )  ∪  ( Base ‘ 𝑅 ) )  ↔  ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) ) : ( 𝐴  ∪  𝐵 ) ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 126 | 122 125 | sylib | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) ) : ( 𝐴  ∪  𝐵 ) ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 127 | 1 67 2 | pwselbasb | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉 )  →  ( ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  ∈  𝐺  ↔  ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) ) : ( 𝐴  ∪  𝐵 ) ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 128 | 127 | 3adant3 | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  ∈  𝐺  ↔  ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) ) : ( 𝐴  ∪  𝐵 ) ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 129 | 128 | adantr | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  ∈  𝐺  ↔  ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) ) : ( 𝐴  ∪  𝐵 ) ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 130 | 126 129 | mpbird | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  ∈  𝐺 ) | 
						
							| 131 |  | simpl3 | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( 𝐴  ∩  𝐵 )  =  ∅ ) | 
						
							| 132 | 117 131 | eqtrid | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( 𝐵  ∩  𝐴 )  =  ∅ ) | 
						
							| 133 |  | ffn | ⊢ ( 𝑎 : 𝐵 ⟶ ( Base ‘ 𝑅 )  →  𝑎  Fn  𝐵 ) | 
						
							| 134 |  | fnresdisj | ⊢ ( 𝑎  Fn  𝐵  →  ( ( 𝐵  ∩  𝐴 )  =  ∅  ↔  ( 𝑎  ↾  𝐴 )  =  ∅ ) ) | 
						
							| 135 | 108 133 134 | 3syl | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( ( 𝐵  ∩  𝐴 )  =  ∅  ↔  ( 𝑎  ↾  𝐴 )  =  ∅ ) ) | 
						
							| 136 | 132 135 | mpbid | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( 𝑎  ↾  𝐴 )  =  ∅ ) | 
						
							| 137 |  | fnconstg | ⊢ (  0   ∈  V  →  ( 𝐴  ×  {  0  } )  Fn  𝐴 ) | 
						
							| 138 |  | fnresdm | ⊢ ( ( 𝐴  ×  {  0  } )  Fn  𝐴  →  ( ( 𝐴  ×  {  0  } )  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) ) | 
						
							| 139 | 109 137 138 | mp2b | ⊢ ( ( 𝐴  ×  {  0  } )  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) | 
						
							| 140 | 139 | a1i | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( ( 𝐴  ×  {  0  } )  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) ) | 
						
							| 141 | 136 140 | uneq12d | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( ( 𝑎  ↾  𝐴 )  ∪  ( ( 𝐴  ×  {  0  } )  ↾  𝐴 ) )  =  ( ∅  ∪  ( 𝐴  ×  {  0  } ) ) ) | 
						
							| 142 |  | resundir | ⊢ ( ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  ↾  𝐴 )  =  ( ( 𝑎  ↾  𝐴 )  ∪  ( ( 𝐴  ×  {  0  } )  ↾  𝐴 ) ) | 
						
							| 143 |  | uncom | ⊢ ( ∅  ∪  ( 𝐴  ×  {  0  } ) )  =  ( ( 𝐴  ×  {  0  } )  ∪  ∅ ) | 
						
							| 144 |  | un0 | ⊢ ( ( 𝐴  ×  {  0  } )  ∪  ∅ )  =  ( 𝐴  ×  {  0  } ) | 
						
							| 145 | 143 144 | eqtr2i | ⊢ ( 𝐴  ×  {  0  } )  =  ( ∅  ∪  ( 𝐴  ×  {  0  } ) ) | 
						
							| 146 | 141 142 145 | 3eqtr4g | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) ) | 
						
							| 147 |  | reseq1 | ⊢ ( 𝑦  =  ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  →  ( 𝑦  ↾  𝐴 )  =  ( ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  ↾  𝐴 ) ) | 
						
							| 148 | 147 | eqeq1d | ⊢ ( 𝑦  =  ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  →  ( ( 𝑦  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } )  ↔  ( ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) ) ) | 
						
							| 149 | 148 4 | elrab2 | ⊢ ( ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  ∈  𝐾  ↔  ( ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  ∈  𝐺  ∧  ( ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  ↾  𝐴 )  =  ( 𝐴  ×  {  0  } ) ) ) | 
						
							| 150 | 130 146 149 | sylanbrc | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  ∈  𝐾 ) | 
						
							| 151 | 130 | resexd | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  ↾  𝐵 )  ∈  V ) | 
						
							| 152 | 5 105 150 151 | fvmptd3 | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( 𝐹 ‘ ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) ) )  =  ( ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  ↾  𝐵 ) ) | 
						
							| 153 |  | resundir | ⊢ ( ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  ↾  𝐵 )  =  ( ( 𝑎  ↾  𝐵 )  ∪  ( ( 𝐴  ×  {  0  } )  ↾  𝐵 ) ) | 
						
							| 154 |  | fnresdm | ⊢ ( 𝑎  Fn  𝐵  →  ( 𝑎  ↾  𝐵 )  =  𝑎 ) | 
						
							| 155 | 108 133 154 | 3syl | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( 𝑎  ↾  𝐵 )  =  𝑎 ) | 
						
							| 156 |  | ffn | ⊢ ( ( 𝐴  ×  {  0  } ) : 𝐴 ⟶ {  0  }  →  ( 𝐴  ×  {  0  } )  Fn  𝐴 ) | 
						
							| 157 |  | fnresdisj | ⊢ ( ( 𝐴  ×  {  0  } )  Fn  𝐴  →  ( ( 𝐴  ∩  𝐵 )  =  ∅  ↔  ( ( 𝐴  ×  {  0  } )  ↾  𝐵 )  =  ∅ ) ) | 
						
							| 158 | 110 156 157 | mp2b | ⊢ ( ( 𝐴  ∩  𝐵 )  =  ∅  ↔  ( ( 𝐴  ×  {  0  } )  ↾  𝐵 )  =  ∅ ) | 
						
							| 159 | 158 | biimpi | ⊢ ( ( 𝐴  ∩  𝐵 )  =  ∅  →  ( ( 𝐴  ×  {  0  } )  ↾  𝐵 )  =  ∅ ) | 
						
							| 160 | 159 | 3ad2ant3 | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ( 𝐴  ×  {  0  } )  ↾  𝐵 )  =  ∅ ) | 
						
							| 161 | 160 | adantr | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( ( 𝐴  ×  {  0  } )  ↾  𝐵 )  =  ∅ ) | 
						
							| 162 | 155 161 | uneq12d | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( ( 𝑎  ↾  𝐵 )  ∪  ( ( 𝐴  ×  {  0  } )  ↾  𝐵 ) )  =  ( 𝑎  ∪  ∅ ) ) | 
						
							| 163 |  | un0 | ⊢ ( 𝑎  ∪  ∅ )  =  𝑎 | 
						
							| 164 | 162 163 | eqtrdi | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( ( 𝑎  ↾  𝐵 )  ∪  ( ( 𝐴  ×  {  0  } )  ↾  𝐵 ) )  =  𝑎 ) | 
						
							| 165 | 153 164 | eqtrid | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  ↾  𝐵 )  =  𝑎 ) | 
						
							| 166 | 152 165 | eqtrd | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( 𝐹 ‘ ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) ) )  =  𝑎 ) | 
						
							| 167 | 95 16 | lmhmf | ⊢ ( 𝐹  ∈  ( 𝐿  LMHom  𝐷 )  →  𝐹 : 𝐾 ⟶ ( Base ‘ 𝐷 ) ) | 
						
							| 168 |  | ffn | ⊢ ( 𝐹 : 𝐾 ⟶ ( Base ‘ 𝐷 )  →  𝐹  Fn  𝐾 ) | 
						
							| 169 | 49 167 168 | 3syl | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  𝐹  Fn  𝐾 ) | 
						
							| 170 | 169 | adantr | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  𝐹  Fn  𝐾 ) | 
						
							| 171 |  | fnfvelrn | ⊢ ( ( 𝐹  Fn  𝐾  ∧  ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) )  ∈  𝐾 )  →  ( 𝐹 ‘ ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) ) )  ∈  ran  𝐹 ) | 
						
							| 172 | 170 150 171 | syl2anc | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  ( 𝐹 ‘ ( 𝑎  ∪  ( 𝐴  ×  {  0  } ) ) )  ∈  ran  𝐹 ) | 
						
							| 173 | 166 172 | eqeltrrd | ⊢ ( ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  ∧  𝑎  ∈  ( Base ‘ 𝐷 ) )  →  𝑎  ∈  ran  𝐹 ) | 
						
							| 174 | 104 173 | eqelssd | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ran  𝐹  =  ( Base ‘ 𝐷 ) ) | 
						
							| 175 |  | dff1o5 | ⊢ ( 𝐹 : 𝐾 –1-1-onto→ ( Base ‘ 𝐷 )  ↔  ( 𝐹 : 𝐾 –1-1→ ( Base ‘ 𝐷 )  ∧  ran  𝐹  =  ( Base ‘ 𝐷 ) ) ) | 
						
							| 176 | 100 174 175 | sylanbrc | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  𝐹 : 𝐾 –1-1-onto→ ( Base ‘ 𝐷 ) ) | 
						
							| 177 | 95 16 | islmim | ⊢ ( 𝐹  ∈  ( 𝐿  LMIso  𝐷 )  ↔  ( 𝐹  ∈  ( 𝐿  LMHom  𝐷 )  ∧  𝐹 : 𝐾 –1-1-onto→ ( Base ‘ 𝐷 ) ) ) | 
						
							| 178 | 49 176 177 | sylanbrc | ⊢ ( ( 𝑅  ∈  LMod  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  𝐹  ∈  ( 𝐿  LMIso  𝐷 ) ) |