| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwssplit4.e |  |-  E = ( R ^s ( A u. B ) ) | 
						
							| 2 |  | pwssplit4.g |  |-  G = ( Base ` E ) | 
						
							| 3 |  | pwssplit4.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | pwssplit4.k |  |-  K = { y e. G | ( y |` A ) = ( A X. { .0. } ) } | 
						
							| 5 |  | pwssplit4.f |  |-  F = ( x e. K |-> ( x |` B ) ) | 
						
							| 6 |  | pwssplit4.c |  |-  C = ( R ^s A ) | 
						
							| 7 |  | pwssplit4.d |  |-  D = ( R ^s B ) | 
						
							| 8 |  | pwssplit4.l |  |-  L = ( E |`s K ) | 
						
							| 9 |  | ssrab2 |  |-  { y e. G | ( y |` A ) = ( A X. { .0. } ) } C_ G | 
						
							| 10 | 4 9 | eqsstri |  |-  K C_ G | 
						
							| 11 |  | resmpt |  |-  ( K C_ G -> ( ( x e. G |-> ( x |` B ) ) |` K ) = ( x e. K |-> ( x |` B ) ) ) | 
						
							| 12 | 10 11 | ax-mp |  |-  ( ( x e. G |-> ( x |` B ) ) |` K ) = ( x e. K |-> ( x |` B ) ) | 
						
							| 13 | 5 12 | eqtr4i |  |-  F = ( ( x e. G |-> ( x |` B ) ) |` K ) | 
						
							| 14 |  | ssun2 |  |-  B C_ ( A u. B ) | 
						
							| 15 | 14 | a1i |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> B C_ ( A u. B ) ) | 
						
							| 16 |  | eqid |  |-  ( Base ` D ) = ( Base ` D ) | 
						
							| 17 |  | eqid |  |-  ( x e. G |-> ( x |` B ) ) = ( x e. G |-> ( x |` B ) ) | 
						
							| 18 | 1 7 2 16 17 | pwssplit3 |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ B C_ ( A u. B ) ) -> ( x e. G |-> ( x |` B ) ) e. ( E LMHom D ) ) | 
						
							| 19 | 15 18 | syld3an3 |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( x e. G |-> ( x |` B ) ) e. ( E LMHom D ) ) | 
						
							| 20 |  | simp1 |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> R e. LMod ) | 
						
							| 21 |  | lmodgrp |  |-  ( R e. LMod -> R e. Grp ) | 
						
							| 22 |  | grpmnd |  |-  ( R e. Grp -> R e. Mnd ) | 
						
							| 23 | 20 21 22 | 3syl |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> R e. Mnd ) | 
						
							| 24 |  | ssun1 |  |-  A C_ ( A u. B ) | 
						
							| 25 |  | ssexg |  |-  ( ( A C_ ( A u. B ) /\ ( A u. B ) e. V ) -> A e. _V ) | 
						
							| 26 | 24 25 | mpan |  |-  ( ( A u. B ) e. V -> A e. _V ) | 
						
							| 27 | 26 | 3ad2ant2 |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> A e. _V ) | 
						
							| 28 | 6 3 | pws0g |  |-  ( ( R e. Mnd /\ A e. _V ) -> ( A X. { .0. } ) = ( 0g ` C ) ) | 
						
							| 29 | 23 27 28 | syl2anc |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( A X. { .0. } ) = ( 0g ` C ) ) | 
						
							| 30 | 29 | eqeq2d |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( ( y |` A ) = ( A X. { .0. } ) <-> ( y |` A ) = ( 0g ` C ) ) ) | 
						
							| 31 | 30 | rabbidv |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> { y e. G | ( y |` A ) = ( A X. { .0. } ) } = { y e. G | ( y |` A ) = ( 0g ` C ) } ) | 
						
							| 32 | 4 31 | eqtrid |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> K = { y e. G | ( y |` A ) = ( 0g ` C ) } ) | 
						
							| 33 | 24 | a1i |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> A C_ ( A u. B ) ) | 
						
							| 34 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 35 |  | eqid |  |-  ( y e. G |-> ( y |` A ) ) = ( y e. G |-> ( y |` A ) ) | 
						
							| 36 | 1 6 2 34 35 | pwssplit3 |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ A C_ ( A u. B ) ) -> ( y e. G |-> ( y |` A ) ) e. ( E LMHom C ) ) | 
						
							| 37 | 33 36 | syld3an3 |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( y e. G |-> ( y |` A ) ) e. ( E LMHom C ) ) | 
						
							| 38 |  | fvex |  |-  ( 0g ` C ) e. _V | 
						
							| 39 | 35 | mptiniseg |  |-  ( ( 0g ` C ) e. _V -> ( `' ( y e. G |-> ( y |` A ) ) " { ( 0g ` C ) } ) = { y e. G | ( y |` A ) = ( 0g ` C ) } ) | 
						
							| 40 | 38 39 | ax-mp |  |-  ( `' ( y e. G |-> ( y |` A ) ) " { ( 0g ` C ) } ) = { y e. G | ( y |` A ) = ( 0g ` C ) } | 
						
							| 41 | 40 | eqcomi |  |-  { y e. G | ( y |` A ) = ( 0g ` C ) } = ( `' ( y e. G |-> ( y |` A ) ) " { ( 0g ` C ) } ) | 
						
							| 42 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 43 |  | eqid |  |-  ( LSubSp ` E ) = ( LSubSp ` E ) | 
						
							| 44 | 41 42 43 | lmhmkerlss |  |-  ( ( y e. G |-> ( y |` A ) ) e. ( E LMHom C ) -> { y e. G | ( y |` A ) = ( 0g ` C ) } e. ( LSubSp ` E ) ) | 
						
							| 45 | 37 44 | syl |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> { y e. G | ( y |` A ) = ( 0g ` C ) } e. ( LSubSp ` E ) ) | 
						
							| 46 | 32 45 | eqeltrd |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> K e. ( LSubSp ` E ) ) | 
						
							| 47 | 43 8 | reslmhm |  |-  ( ( ( x e. G |-> ( x |` B ) ) e. ( E LMHom D ) /\ K e. ( LSubSp ` E ) ) -> ( ( x e. G |-> ( x |` B ) ) |` K ) e. ( L LMHom D ) ) | 
						
							| 48 | 19 46 47 | syl2anc |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( ( x e. G |-> ( x |` B ) ) |` K ) e. ( L LMHom D ) ) | 
						
							| 49 | 13 48 | eqeltrid |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> F e. ( L LMHom D ) ) | 
						
							| 50 | 5 | fvtresfn |  |-  ( a e. K -> ( F ` a ) = ( a |` B ) ) | 
						
							| 51 |  | ssexg |  |-  ( ( B C_ ( A u. B ) /\ ( A u. B ) e. V ) -> B e. _V ) | 
						
							| 52 | 14 51 | mpan |  |-  ( ( A u. B ) e. V -> B e. _V ) | 
						
							| 53 | 52 | 3ad2ant2 |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> B e. _V ) | 
						
							| 54 | 7 3 | pws0g |  |-  ( ( R e. Mnd /\ B e. _V ) -> ( B X. { .0. } ) = ( 0g ` D ) ) | 
						
							| 55 | 23 53 54 | syl2anc |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( B X. { .0. } ) = ( 0g ` D ) ) | 
						
							| 56 | 55 | eqcomd |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( 0g ` D ) = ( B X. { .0. } ) ) | 
						
							| 57 | 50 56 | eqeqan12rd |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. K ) -> ( ( F ` a ) = ( 0g ` D ) <-> ( a |` B ) = ( B X. { .0. } ) ) ) | 
						
							| 58 |  | reseq1 |  |-  ( y = a -> ( y |` A ) = ( a |` A ) ) | 
						
							| 59 | 58 | eqeq1d |  |-  ( y = a -> ( ( y |` A ) = ( A X. { .0. } ) <-> ( a |` A ) = ( A X. { .0. } ) ) ) | 
						
							| 60 | 59 4 | elrab2 |  |-  ( a e. K <-> ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) ) | 
						
							| 61 |  | uneq12 |  |-  ( ( ( a |` A ) = ( A X. { .0. } ) /\ ( a |` B ) = ( B X. { .0. } ) ) -> ( ( a |` A ) u. ( a |` B ) ) = ( ( A X. { .0. } ) u. ( B X. { .0. } ) ) ) | 
						
							| 62 |  | resundi |  |-  ( a |` ( A u. B ) ) = ( ( a |` A ) u. ( a |` B ) ) | 
						
							| 63 |  | xpundir |  |-  ( ( A u. B ) X. { .0. } ) = ( ( A X. { .0. } ) u. ( B X. { .0. } ) ) | 
						
							| 64 | 61 62 63 | 3eqtr4g |  |-  ( ( ( a |` A ) = ( A X. { .0. } ) /\ ( a |` B ) = ( B X. { .0. } ) ) -> ( a |` ( A u. B ) ) = ( ( A u. B ) X. { .0. } ) ) | 
						
							| 65 | 64 | adantll |  |-  ( ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) /\ ( a |` B ) = ( B X. { .0. } ) ) -> ( a |` ( A u. B ) ) = ( ( A u. B ) X. { .0. } ) ) | 
						
							| 66 | 65 | adantl |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) /\ ( a |` B ) = ( B X. { .0. } ) ) ) -> ( a |` ( A u. B ) ) = ( ( A u. B ) X. { .0. } ) ) | 
						
							| 67 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 68 |  | simpl1 |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) /\ ( a |` B ) = ( B X. { .0. } ) ) ) -> R e. LMod ) | 
						
							| 69 |  | simp2 |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( A u. B ) e. V ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) /\ ( a |` B ) = ( B X. { .0. } ) ) ) -> ( A u. B ) e. V ) | 
						
							| 71 |  | simprll |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) /\ ( a |` B ) = ( B X. { .0. } ) ) ) -> a e. G ) | 
						
							| 72 | 1 67 2 68 70 71 | pwselbas |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) /\ ( a |` B ) = ( B X. { .0. } ) ) ) -> a : ( A u. B ) --> ( Base ` R ) ) | 
						
							| 73 |  | ffn |  |-  ( a : ( A u. B ) --> ( Base ` R ) -> a Fn ( A u. B ) ) | 
						
							| 74 |  | fnresdm |  |-  ( a Fn ( A u. B ) -> ( a |` ( A u. B ) ) = a ) | 
						
							| 75 | 72 73 74 | 3syl |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) /\ ( a |` B ) = ( B X. { .0. } ) ) ) -> ( a |` ( A u. B ) ) = a ) | 
						
							| 76 | 1 3 | pws0g |  |-  ( ( R e. Mnd /\ ( A u. B ) e. V ) -> ( ( A u. B ) X. { .0. } ) = ( 0g ` E ) ) | 
						
							| 77 | 23 69 76 | syl2anc |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( ( A u. B ) X. { .0. } ) = ( 0g ` E ) ) | 
						
							| 78 | 1 | pwslmod |  |-  ( ( R e. LMod /\ ( A u. B ) e. V ) -> E e. LMod ) | 
						
							| 79 | 78 | 3adant3 |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> E e. LMod ) | 
						
							| 80 | 43 | lsssubg |  |-  ( ( E e. LMod /\ K e. ( LSubSp ` E ) ) -> K e. ( SubGrp ` E ) ) | 
						
							| 81 | 79 46 80 | syl2anc |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> K e. ( SubGrp ` E ) ) | 
						
							| 82 |  | eqid |  |-  ( 0g ` E ) = ( 0g ` E ) | 
						
							| 83 | 8 82 | subg0 |  |-  ( K e. ( SubGrp ` E ) -> ( 0g ` E ) = ( 0g ` L ) ) | 
						
							| 84 | 81 83 | syl |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( 0g ` E ) = ( 0g ` L ) ) | 
						
							| 85 | 77 84 | eqtrd |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( ( A u. B ) X. { .0. } ) = ( 0g ` L ) ) | 
						
							| 86 | 85 | adantr |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) /\ ( a |` B ) = ( B X. { .0. } ) ) ) -> ( ( A u. B ) X. { .0. } ) = ( 0g ` L ) ) | 
						
							| 87 | 66 75 86 | 3eqtr3d |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) /\ ( a |` B ) = ( B X. { .0. } ) ) ) -> a = ( 0g ` L ) ) | 
						
							| 88 | 87 | exp32 |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) -> ( ( a |` B ) = ( B X. { .0. } ) -> a = ( 0g ` L ) ) ) ) | 
						
							| 89 | 60 88 | biimtrid |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( a e. K -> ( ( a |` B ) = ( B X. { .0. } ) -> a = ( 0g ` L ) ) ) ) | 
						
							| 90 | 89 | imp |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. K ) -> ( ( a |` B ) = ( B X. { .0. } ) -> a = ( 0g ` L ) ) ) | 
						
							| 91 | 57 90 | sylbid |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. K ) -> ( ( F ` a ) = ( 0g ` D ) -> a = ( 0g ` L ) ) ) | 
						
							| 92 | 91 | ralrimiva |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> A. a e. K ( ( F ` a ) = ( 0g ` D ) -> a = ( 0g ` L ) ) ) | 
						
							| 93 |  | lmghm |  |-  ( F e. ( L LMHom D ) -> F e. ( L GrpHom D ) ) | 
						
							| 94 | 8 2 | ressbas2 |  |-  ( K C_ G -> K = ( Base ` L ) ) | 
						
							| 95 | 10 94 | ax-mp |  |-  K = ( Base ` L ) | 
						
							| 96 |  | eqid |  |-  ( 0g ` L ) = ( 0g ` L ) | 
						
							| 97 |  | eqid |  |-  ( 0g ` D ) = ( 0g ` D ) | 
						
							| 98 | 95 16 96 97 | ghmf1 |  |-  ( F e. ( L GrpHom D ) -> ( F : K -1-1-> ( Base ` D ) <-> A. a e. K ( ( F ` a ) = ( 0g ` D ) -> a = ( 0g ` L ) ) ) ) | 
						
							| 99 | 49 93 98 | 3syl |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( F : K -1-1-> ( Base ` D ) <-> A. a e. K ( ( F ` a ) = ( 0g ` D ) -> a = ( 0g ` L ) ) ) ) | 
						
							| 100 | 92 99 | mpbird |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> F : K -1-1-> ( Base ` D ) ) | 
						
							| 101 |  | eqid |  |-  ( Base ` L ) = ( Base ` L ) | 
						
							| 102 | 101 16 | lmhmf |  |-  ( F e. ( L LMHom D ) -> F : ( Base ` L ) --> ( Base ` D ) ) | 
						
							| 103 |  | frn |  |-  ( F : ( Base ` L ) --> ( Base ` D ) -> ran F C_ ( Base ` D ) ) | 
						
							| 104 | 49 102 103 | 3syl |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ran F C_ ( Base ` D ) ) | 
						
							| 105 |  | reseq1 |  |-  ( x = ( a u. ( A X. { .0. } ) ) -> ( x |` B ) = ( ( a u. ( A X. { .0. } ) ) |` B ) ) | 
						
							| 106 | 7 67 16 | pwselbasb |  |-  ( ( R e. LMod /\ B e. _V ) -> ( a e. ( Base ` D ) <-> a : B --> ( Base ` R ) ) ) | 
						
							| 107 | 20 53 106 | syl2anc |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( a e. ( Base ` D ) <-> a : B --> ( Base ` R ) ) ) | 
						
							| 108 | 107 | biimpa |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> a : B --> ( Base ` R ) ) | 
						
							| 109 | 3 | fvexi |  |-  .0. e. _V | 
						
							| 110 | 109 | fconst |  |-  ( A X. { .0. } ) : A --> { .0. } | 
						
							| 111 | 110 | a1i |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( A X. { .0. } ) : A --> { .0. } ) | 
						
							| 112 | 23 | adantr |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> R e. Mnd ) | 
						
							| 113 | 67 3 | mndidcl |  |-  ( R e. Mnd -> .0. e. ( Base ` R ) ) | 
						
							| 114 | 112 113 | syl |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> .0. e. ( Base ` R ) ) | 
						
							| 115 | 114 | snssd |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> { .0. } C_ ( Base ` R ) ) | 
						
							| 116 | 111 115 | fssd |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( A X. { .0. } ) : A --> ( Base ` R ) ) | 
						
							| 117 |  | incom |  |-  ( B i^i A ) = ( A i^i B ) | 
						
							| 118 |  | simp3 |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( A i^i B ) = (/) ) | 
						
							| 119 | 117 118 | eqtrid |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( B i^i A ) = (/) ) | 
						
							| 120 | 119 | adantr |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( B i^i A ) = (/) ) | 
						
							| 121 |  | fun |  |-  ( ( ( a : B --> ( Base ` R ) /\ ( A X. { .0. } ) : A --> ( Base ` R ) ) /\ ( B i^i A ) = (/) ) -> ( a u. ( A X. { .0. } ) ) : ( B u. A ) --> ( ( Base ` R ) u. ( Base ` R ) ) ) | 
						
							| 122 | 108 116 120 121 | syl21anc |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( a u. ( A X. { .0. } ) ) : ( B u. A ) --> ( ( Base ` R ) u. ( Base ` R ) ) ) | 
						
							| 123 |  | uncom |  |-  ( B u. A ) = ( A u. B ) | 
						
							| 124 |  | unidm |  |-  ( ( Base ` R ) u. ( Base ` R ) ) = ( Base ` R ) | 
						
							| 125 | 123 124 | feq23i |  |-  ( ( a u. ( A X. { .0. } ) ) : ( B u. A ) --> ( ( Base ` R ) u. ( Base ` R ) ) <-> ( a u. ( A X. { .0. } ) ) : ( A u. B ) --> ( Base ` R ) ) | 
						
							| 126 | 122 125 | sylib |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( a u. ( A X. { .0. } ) ) : ( A u. B ) --> ( Base ` R ) ) | 
						
							| 127 | 1 67 2 | pwselbasb |  |-  ( ( R e. LMod /\ ( A u. B ) e. V ) -> ( ( a u. ( A X. { .0. } ) ) e. G <-> ( a u. ( A X. { .0. } ) ) : ( A u. B ) --> ( Base ` R ) ) ) | 
						
							| 128 | 127 | 3adant3 |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( ( a u. ( A X. { .0. } ) ) e. G <-> ( a u. ( A X. { .0. } ) ) : ( A u. B ) --> ( Base ` R ) ) ) | 
						
							| 129 | 128 | adantr |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( a u. ( A X. { .0. } ) ) e. G <-> ( a u. ( A X. { .0. } ) ) : ( A u. B ) --> ( Base ` R ) ) ) | 
						
							| 130 | 126 129 | mpbird |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( a u. ( A X. { .0. } ) ) e. G ) | 
						
							| 131 |  | simpl3 |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( A i^i B ) = (/) ) | 
						
							| 132 | 117 131 | eqtrid |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( B i^i A ) = (/) ) | 
						
							| 133 |  | ffn |  |-  ( a : B --> ( Base ` R ) -> a Fn B ) | 
						
							| 134 |  | fnresdisj |  |-  ( a Fn B -> ( ( B i^i A ) = (/) <-> ( a |` A ) = (/) ) ) | 
						
							| 135 | 108 133 134 | 3syl |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( B i^i A ) = (/) <-> ( a |` A ) = (/) ) ) | 
						
							| 136 | 132 135 | mpbid |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( a |` A ) = (/) ) | 
						
							| 137 |  | fnconstg |  |-  ( .0. e. _V -> ( A X. { .0. } ) Fn A ) | 
						
							| 138 |  | fnresdm |  |-  ( ( A X. { .0. } ) Fn A -> ( ( A X. { .0. } ) |` A ) = ( A X. { .0. } ) ) | 
						
							| 139 | 109 137 138 | mp2b |  |-  ( ( A X. { .0. } ) |` A ) = ( A X. { .0. } ) | 
						
							| 140 | 139 | a1i |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( A X. { .0. } ) |` A ) = ( A X. { .0. } ) ) | 
						
							| 141 | 136 140 | uneq12d |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( a |` A ) u. ( ( A X. { .0. } ) |` A ) ) = ( (/) u. ( A X. { .0. } ) ) ) | 
						
							| 142 |  | resundir |  |-  ( ( a u. ( A X. { .0. } ) ) |` A ) = ( ( a |` A ) u. ( ( A X. { .0. } ) |` A ) ) | 
						
							| 143 |  | uncom |  |-  ( (/) u. ( A X. { .0. } ) ) = ( ( A X. { .0. } ) u. (/) ) | 
						
							| 144 |  | un0 |  |-  ( ( A X. { .0. } ) u. (/) ) = ( A X. { .0. } ) | 
						
							| 145 | 143 144 | eqtr2i |  |-  ( A X. { .0. } ) = ( (/) u. ( A X. { .0. } ) ) | 
						
							| 146 | 141 142 145 | 3eqtr4g |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( a u. ( A X. { .0. } ) ) |` A ) = ( A X. { .0. } ) ) | 
						
							| 147 |  | reseq1 |  |-  ( y = ( a u. ( A X. { .0. } ) ) -> ( y |` A ) = ( ( a u. ( A X. { .0. } ) ) |` A ) ) | 
						
							| 148 | 147 | eqeq1d |  |-  ( y = ( a u. ( A X. { .0. } ) ) -> ( ( y |` A ) = ( A X. { .0. } ) <-> ( ( a u. ( A X. { .0. } ) ) |` A ) = ( A X. { .0. } ) ) ) | 
						
							| 149 | 148 4 | elrab2 |  |-  ( ( a u. ( A X. { .0. } ) ) e. K <-> ( ( a u. ( A X. { .0. } ) ) e. G /\ ( ( a u. ( A X. { .0. } ) ) |` A ) = ( A X. { .0. } ) ) ) | 
						
							| 150 | 130 146 149 | sylanbrc |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( a u. ( A X. { .0. } ) ) e. K ) | 
						
							| 151 | 130 | resexd |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( a u. ( A X. { .0. } ) ) |` B ) e. _V ) | 
						
							| 152 | 5 105 150 151 | fvmptd3 |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( F ` ( a u. ( A X. { .0. } ) ) ) = ( ( a u. ( A X. { .0. } ) ) |` B ) ) | 
						
							| 153 |  | resundir |  |-  ( ( a u. ( A X. { .0. } ) ) |` B ) = ( ( a |` B ) u. ( ( A X. { .0. } ) |` B ) ) | 
						
							| 154 |  | fnresdm |  |-  ( a Fn B -> ( a |` B ) = a ) | 
						
							| 155 | 108 133 154 | 3syl |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( a |` B ) = a ) | 
						
							| 156 |  | ffn |  |-  ( ( A X. { .0. } ) : A --> { .0. } -> ( A X. { .0. } ) Fn A ) | 
						
							| 157 |  | fnresdisj |  |-  ( ( A X. { .0. } ) Fn A -> ( ( A i^i B ) = (/) <-> ( ( A X. { .0. } ) |` B ) = (/) ) ) | 
						
							| 158 | 110 156 157 | mp2b |  |-  ( ( A i^i B ) = (/) <-> ( ( A X. { .0. } ) |` B ) = (/) ) | 
						
							| 159 | 158 | biimpi |  |-  ( ( A i^i B ) = (/) -> ( ( A X. { .0. } ) |` B ) = (/) ) | 
						
							| 160 | 159 | 3ad2ant3 |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( ( A X. { .0. } ) |` B ) = (/) ) | 
						
							| 161 | 160 | adantr |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( A X. { .0. } ) |` B ) = (/) ) | 
						
							| 162 | 155 161 | uneq12d |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( a |` B ) u. ( ( A X. { .0. } ) |` B ) ) = ( a u. (/) ) ) | 
						
							| 163 |  | un0 |  |-  ( a u. (/) ) = a | 
						
							| 164 | 162 163 | eqtrdi |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( a |` B ) u. ( ( A X. { .0. } ) |` B ) ) = a ) | 
						
							| 165 | 153 164 | eqtrid |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( a u. ( A X. { .0. } ) ) |` B ) = a ) | 
						
							| 166 | 152 165 | eqtrd |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( F ` ( a u. ( A X. { .0. } ) ) ) = a ) | 
						
							| 167 | 95 16 | lmhmf |  |-  ( F e. ( L LMHom D ) -> F : K --> ( Base ` D ) ) | 
						
							| 168 |  | ffn |  |-  ( F : K --> ( Base ` D ) -> F Fn K ) | 
						
							| 169 | 49 167 168 | 3syl |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> F Fn K ) | 
						
							| 170 | 169 | adantr |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> F Fn K ) | 
						
							| 171 |  | fnfvelrn |  |-  ( ( F Fn K /\ ( a u. ( A X. { .0. } ) ) e. K ) -> ( F ` ( a u. ( A X. { .0. } ) ) ) e. ran F ) | 
						
							| 172 | 170 150 171 | syl2anc |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( F ` ( a u. ( A X. { .0. } ) ) ) e. ran F ) | 
						
							| 173 | 166 172 | eqeltrrd |  |-  ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> a e. ran F ) | 
						
							| 174 | 104 173 | eqelssd |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ran F = ( Base ` D ) ) | 
						
							| 175 |  | dff1o5 |  |-  ( F : K -1-1-onto-> ( Base ` D ) <-> ( F : K -1-1-> ( Base ` D ) /\ ran F = ( Base ` D ) ) ) | 
						
							| 176 | 100 174 175 | sylanbrc |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> F : K -1-1-onto-> ( Base ` D ) ) | 
						
							| 177 | 95 16 | islmim |  |-  ( F e. ( L LMIso D ) <-> ( F e. ( L LMHom D ) /\ F : K -1-1-onto-> ( Base ` D ) ) ) | 
						
							| 178 | 49 176 177 | sylanbrc |  |-  ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> F e. ( L LMIso D ) ) |