| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. NN ) |
| 2 |
1
|
nnzd |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. ZZ ) |
| 3 |
|
simp2 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. NN ) |
| 4 |
3
|
nnzd |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. ZZ ) |
| 5 |
2 4
|
zsubcld |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. ZZ ) |
| 6 |
5
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. ZZ ) |
| 7 |
1 3
|
nnaddcld |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. NN ) |
| 8 |
7
|
nnnn0d |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. NN0 ) |
| 9 |
8
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. NN0 ) |
| 10 |
|
nnnn0 |
|- ( A e. NN -> A e. NN0 ) |
| 11 |
10
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. NN0 ) |
| 12 |
11
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. NN0 ) |
| 13 |
6 9 12
|
3jca |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) e. ZZ /\ ( C + B ) e. NN0 /\ A e. NN0 ) ) |
| 14 |
|
pythagtriplem4 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = 1 ) |
| 15 |
14
|
oveq1d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( C + B ) ) gcd A ) = ( 1 gcd A ) ) |
| 16 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
| 17 |
16
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. ZZ ) |
| 18 |
17
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. ZZ ) |
| 19 |
|
1gcd |
|- ( A e. ZZ -> ( 1 gcd A ) = 1 ) |
| 20 |
18 19
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 1 gcd A ) = 1 ) |
| 21 |
15 20
|
eqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( C + B ) ) gcd A ) = 1 ) |
| 22 |
13 21
|
jca |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) e. ZZ /\ ( C + B ) e. NN0 /\ A e. NN0 ) /\ ( ( ( C - B ) gcd ( C + B ) ) gcd A ) = 1 ) ) |
| 23 |
|
oveq1 |
|- ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
| 24 |
23
|
3ad2ant2 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
| 25 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
| 26 |
25
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. CC ) |
| 27 |
26
|
sqcld |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A ^ 2 ) e. CC ) |
| 28 |
3
|
nncnd |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. CC ) |
| 29 |
28
|
sqcld |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B ^ 2 ) e. CC ) |
| 30 |
27 29
|
pncand |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) |
| 31 |
30
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) |
| 32 |
1
|
nncnd |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. CC ) |
| 33 |
|
subsq |
|- ( ( C e. CC /\ B e. CC ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) |
| 34 |
32 28 33
|
syl2anc |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) |
| 35 |
7
|
nncnd |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. CC ) |
| 36 |
5
|
zcnd |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. CC ) |
| 37 |
35 36
|
mulcomd |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( C + B ) x. ( C - B ) ) = ( ( C - B ) x. ( C + B ) ) ) |
| 38 |
34 37
|
eqtrd |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C - B ) x. ( C + B ) ) ) |
| 39 |
38
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C - B ) x. ( C + B ) ) ) |
| 40 |
24 31 39
|
3eqtr3d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( A ^ 2 ) = ( ( C - B ) x. ( C + B ) ) ) |
| 41 |
|
coprimeprodsq2 |
|- ( ( ( ( C - B ) e. ZZ /\ ( C + B ) e. NN0 /\ A e. NN0 ) /\ ( ( ( C - B ) gcd ( C + B ) ) gcd A ) = 1 ) -> ( ( A ^ 2 ) = ( ( C - B ) x. ( C + B ) ) -> ( C + B ) = ( ( ( C + B ) gcd A ) ^ 2 ) ) ) |
| 42 |
22 40 41
|
sylc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) = ( ( ( C + B ) gcd A ) ^ 2 ) ) |
| 43 |
42
|
fveq2d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) = ( sqrt ` ( ( ( C + B ) gcd A ) ^ 2 ) ) ) |
| 44 |
7
|
nnzd |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. ZZ ) |
| 45 |
44
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. ZZ ) |
| 46 |
45 18
|
gcdcld |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) gcd A ) e. NN0 ) |
| 47 |
46
|
nn0red |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) gcd A ) e. RR ) |
| 48 |
46
|
nn0ge0d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( ( C + B ) gcd A ) ) |
| 49 |
47 48
|
sqrtsqd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( ( ( C + B ) gcd A ) ^ 2 ) ) = ( ( C + B ) gcd A ) ) |
| 50 |
43 49
|
eqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) = ( ( C + B ) gcd A ) ) |