| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
|
| 2 |
1
|
nnzd |
|
| 3 |
|
simp2 |
|
| 4 |
3
|
nnzd |
|
| 5 |
2 4
|
zsubcld |
|
| 6 |
5
|
3ad2ant1 |
|
| 7 |
1 3
|
nnaddcld |
|
| 8 |
7
|
nnnn0d |
|
| 9 |
8
|
3ad2ant1 |
|
| 10 |
|
nnnn0 |
|
| 11 |
10
|
3ad2ant1 |
|
| 12 |
11
|
3ad2ant1 |
|
| 13 |
6 9 12
|
3jca |
|
| 14 |
|
pythagtriplem4 |
|
| 15 |
14
|
oveq1d |
|
| 16 |
|
nnz |
|
| 17 |
16
|
3ad2ant1 |
|
| 18 |
17
|
3ad2ant1 |
|
| 19 |
|
1gcd |
|
| 20 |
18 19
|
syl |
|
| 21 |
15 20
|
eqtrd |
|
| 22 |
13 21
|
jca |
|
| 23 |
|
oveq1 |
|
| 24 |
23
|
3ad2ant2 |
|
| 25 |
|
nncn |
|
| 26 |
25
|
3ad2ant1 |
|
| 27 |
26
|
sqcld |
|
| 28 |
3
|
nncnd |
|
| 29 |
28
|
sqcld |
|
| 30 |
27 29
|
pncand |
|
| 31 |
30
|
3ad2ant1 |
|
| 32 |
1
|
nncnd |
|
| 33 |
|
subsq |
|
| 34 |
32 28 33
|
syl2anc |
|
| 35 |
7
|
nncnd |
|
| 36 |
5
|
zcnd |
|
| 37 |
35 36
|
mulcomd |
|
| 38 |
34 37
|
eqtrd |
|
| 39 |
38
|
3ad2ant1 |
|
| 40 |
24 31 39
|
3eqtr3d |
|
| 41 |
|
coprimeprodsq2 |
|
| 42 |
22 40 41
|
sylc |
|
| 43 |
42
|
fveq2d |
|
| 44 |
7
|
nnzd |
|
| 45 |
44
|
3ad2ant1 |
|
| 46 |
45 18
|
gcdcld |
|
| 47 |
46
|
nn0red |
|
| 48 |
46
|
nn0ge0d |
|
| 49 |
47 48
|
sqrtsqd |
|
| 50 |
43 49
|
eqtrd |
|