Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | coprimeprodsq2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn | |
|
2 | nn0cn | |
|
3 | mulcom | |
|
4 | 1 2 3 | syl2an | |
5 | 4 | 3adant3 | |
6 | 5 | adantr | |
7 | 6 | eqeq2d | |
8 | simpl2 | |
|
9 | simpl1 | |
|
10 | simpl3 | |
|
11 | nn0z | |
|
12 | gcdcom | |
|
13 | 12 | oveq1d | |
14 | 13 | eqeq1d | |
15 | 11 14 | sylan2 | |
16 | 15 | 3adant3 | |
17 | 16 | biimpa | |
18 | coprimeprodsq | |
|
19 | 8 9 10 17 18 | syl31anc | |
20 | 7 19 | sylbid | |