Metamath Proof Explorer


Theorem coprimeprodsq2

Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion coprimeprodsq2 AB0C0AgcdBgcdC=1C2=ABB=BgcdC2

Proof

Step Hyp Ref Expression
1 zcn AA
2 nn0cn B0B
3 mulcom ABAB=BA
4 1 2 3 syl2an AB0AB=BA
5 4 3adant3 AB0C0AB=BA
6 5 adantr AB0C0AgcdBgcdC=1AB=BA
7 6 eqeq2d AB0C0AgcdBgcdC=1C2=ABC2=BA
8 simpl2 AB0C0AgcdBgcdC=1B0
9 simpl1 AB0C0AgcdBgcdC=1A
10 simpl3 AB0C0AgcdBgcdC=1C0
11 nn0z B0B
12 gcdcom ABAgcdB=BgcdA
13 12 oveq1d ABAgcdBgcdC=BgcdAgcdC
14 13 eqeq1d ABAgcdBgcdC=1BgcdAgcdC=1
15 11 14 sylan2 AB0AgcdBgcdC=1BgcdAgcdC=1
16 15 3adant3 AB0C0AgcdBgcdC=1BgcdAgcdC=1
17 16 biimpa AB0C0AgcdBgcdC=1BgcdAgcdC=1
18 coprimeprodsq B0AC0BgcdAgcdC=1C2=BAB=BgcdC2
19 8 9 10 17 18 syl31anc AB0C0AgcdBgcdC=1C2=BAB=BgcdC2
20 7 19 sylbid AB0C0AgcdBgcdC=1C2=ABB=BgcdC2