Metamath Proof Explorer


Theorem pythagtriplem8

Description: Lemma for pythagtrip . Show that ( sqrt( C - B ) ) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion pythagtriplem8 ABCA2+B2=C2AgcdB=1¬2ACB

Proof

Step Hyp Ref Expression
1 pythagtriplem6 ABCA2+B2=C2AgcdB=1¬2ACB=CBgcdA
2 nnz CC
3 nnz BB
4 zsubcl CBCB
5 2 3 4 syl2anr BCCB
6 5 3adant1 ABCCB
7 nnz AA
8 7 3ad2ant1 ABCA
9 nnne0 AA0
10 9 neneqd A¬A=0
11 10 intnand A¬CB=0A=0
12 11 3ad2ant1 ABC¬CB=0A=0
13 gcdn0cl CBA¬CB=0A=0CBgcdA
14 6 8 12 13 syl21anc ABCCBgcdA
15 14 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2ACBgcdA
16 1 15 eqeltrd ABCA2+B2=C2AgcdB=1¬2ACB