Metamath Proof Explorer


Theorem pythagtriplem9

Description: Lemma for pythagtrip . Show that ( sqrt( C + B ) ) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion pythagtriplem9 ABCA2+B2=C2AgcdB=1¬2AC+B

Proof

Step Hyp Ref Expression
1 pythagtriplem7 ABCA2+B2=C2AgcdB=1¬2AC+B=C+BgcdA
2 nnz CC
3 nnz BB
4 zaddcl CBC+B
5 2 3 4 syl2anr BCC+B
6 5 3adant1 ABCC+B
7 6 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AC+B
8 nnz AA
9 8 3ad2ant1 ABCA
10 9 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AA
11 nnne0 AA0
12 11 neneqd A¬A=0
13 12 intnand A¬C+B=0A=0
14 13 3ad2ant1 ABC¬C+B=0A=0
15 14 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2A¬C+B=0A=0
16 gcdn0cl C+BA¬C+B=0A=0C+BgcdA
17 7 10 15 16 syl21anc ABCA2+B2=C2AgcdB=1¬2AC+BgcdA
18 1 17 eqeltrd ABCA2+B2=C2AgcdB=1¬2AC+B