| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qusgrp.h |
|- H = ( G /s ( G ~QG S ) ) |
| 2 |
|
qusinv.v |
|- V = ( Base ` G ) |
| 3 |
|
qussub.p |
|- .- = ( -g ` G ) |
| 4 |
|
qussub.a |
|- N = ( -g ` H ) |
| 5 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 6 |
1 2 5
|
quseccl |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ X ] ( G ~QG S ) e. ( Base ` H ) ) |
| 7 |
6
|
3adant3 |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> [ X ] ( G ~QG S ) e. ( Base ` H ) ) |
| 8 |
1 2 5
|
quseccl |
|- ( ( S e. ( NrmSGrp ` G ) /\ Y e. V ) -> [ Y ] ( G ~QG S ) e. ( Base ` H ) ) |
| 9 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
| 10 |
|
eqid |
|- ( invg ` H ) = ( invg ` H ) |
| 11 |
5 9 10 4
|
grpsubval |
|- ( ( [ X ] ( G ~QG S ) e. ( Base ` H ) /\ [ Y ] ( G ~QG S ) e. ( Base ` H ) ) -> ( [ X ] ( G ~QG S ) N [ Y ] ( G ~QG S ) ) = ( [ X ] ( G ~QG S ) ( +g ` H ) ( ( invg ` H ) ` [ Y ] ( G ~QG S ) ) ) ) |
| 12 |
7 8 11
|
3imp3i2an |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( [ X ] ( G ~QG S ) N [ Y ] ( G ~QG S ) ) = ( [ X ] ( G ~QG S ) ( +g ` H ) ( ( invg ` H ) ` [ Y ] ( G ~QG S ) ) ) ) |
| 13 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 14 |
1 2 13 10
|
qusinv |
|- ( ( S e. ( NrmSGrp ` G ) /\ Y e. V ) -> ( ( invg ` H ) ` [ Y ] ( G ~QG S ) ) = [ ( ( invg ` G ) ` Y ) ] ( G ~QG S ) ) |
| 15 |
14
|
3adant2 |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( ( invg ` H ) ` [ Y ] ( G ~QG S ) ) = [ ( ( invg ` G ) ` Y ) ] ( G ~QG S ) ) |
| 16 |
15
|
oveq2d |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( [ X ] ( G ~QG S ) ( +g ` H ) ( ( invg ` H ) ` [ Y ] ( G ~QG S ) ) ) = ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( ( invg ` G ) ` Y ) ] ( G ~QG S ) ) ) |
| 17 |
|
nsgsubg |
|- ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) ) |
| 18 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
| 19 |
17 18
|
syl |
|- ( S e. ( NrmSGrp ` G ) -> G e. Grp ) |
| 20 |
2 13
|
grpinvcl |
|- ( ( G e. Grp /\ Y e. V ) -> ( ( invg ` G ) ` Y ) e. V ) |
| 21 |
19 20
|
sylan |
|- ( ( S e. ( NrmSGrp ` G ) /\ Y e. V ) -> ( ( invg ` G ) ` Y ) e. V ) |
| 22 |
21
|
3adant2 |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( ( invg ` G ) ` Y ) e. V ) |
| 23 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 24 |
1 2 23 9
|
qusadd |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ ( ( invg ` G ) ` Y ) e. V ) -> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( ( invg ` G ) ` Y ) ] ( G ~QG S ) ) = [ ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ] ( G ~QG S ) ) |
| 25 |
22 24
|
syld3an3 |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( ( invg ` G ) ` Y ) ] ( G ~QG S ) ) = [ ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ] ( G ~QG S ) ) |
| 26 |
2 23 13 3
|
grpsubval |
|- ( ( X e. V /\ Y e. V ) -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) |
| 27 |
26
|
3adant1 |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) |
| 28 |
27
|
eceq1d |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> [ ( X .- Y ) ] ( G ~QG S ) = [ ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ] ( G ~QG S ) ) |
| 29 |
25 28
|
eqtr4d |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( ( invg ` G ) ` Y ) ] ( G ~QG S ) ) = [ ( X .- Y ) ] ( G ~QG S ) ) |
| 30 |
12 16 29
|
3eqtrd |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( [ X ] ( G ~QG S ) N [ Y ] ( G ~QG S ) ) = [ ( X .- Y ) ] ( G ~QG S ) ) |