| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rabren3dioph.a |
|- ( ( ( a ` 1 ) = ( b ` X ) /\ ( a ` 2 ) = ( b ` Y ) /\ ( a ` 3 ) = ( b ` Z ) ) -> ( ph <-> ps ) ) |
| 2 |
|
rabren3dioph.b |
|- X e. ( 1 ... N ) |
| 3 |
|
rabren3dioph.c |
|- Y e. ( 1 ... N ) |
| 4 |
|
rabren3dioph.d |
|- Z e. ( 1 ... N ) |
| 5 |
|
vex |
|- b e. _V |
| 6 |
|
tpex |
|- { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } e. _V |
| 7 |
5 6
|
coex |
|- ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) e. _V |
| 8 |
|
1ne2 |
|- 1 =/= 2 |
| 9 |
|
1re |
|- 1 e. RR |
| 10 |
|
1lt3 |
|- 1 < 3 |
| 11 |
9 10
|
ltneii |
|- 1 =/= 3 |
| 12 |
|
2re |
|- 2 e. RR |
| 13 |
|
2lt3 |
|- 2 < 3 |
| 14 |
12 13
|
ltneii |
|- 2 =/= 3 |
| 15 |
|
1ex |
|- 1 e. _V |
| 16 |
|
2ex |
|- 2 e. _V |
| 17 |
|
3ex |
|- 3 e. _V |
| 18 |
2
|
elexi |
|- X e. _V |
| 19 |
3
|
elexi |
|- Y e. _V |
| 20 |
4
|
elexi |
|- Z e. _V |
| 21 |
15 16 17 18 19 20
|
fntp |
|- ( ( 1 =/= 2 /\ 1 =/= 3 /\ 2 =/= 3 ) -> { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } Fn { 1 , 2 , 3 } ) |
| 22 |
8 11 14 21
|
mp3an |
|- { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } Fn { 1 , 2 , 3 } |
| 23 |
15
|
tpid1 |
|- 1 e. { 1 , 2 , 3 } |
| 24 |
|
fvco2 |
|- ( ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } Fn { 1 , 2 , 3 } /\ 1 e. { 1 , 2 , 3 } ) -> ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 1 ) = ( b ` ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 1 ) ) ) |
| 25 |
22 23 24
|
mp2an |
|- ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 1 ) = ( b ` ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 1 ) ) |
| 26 |
15 18
|
fvtp1 |
|- ( ( 1 =/= 2 /\ 1 =/= 3 ) -> ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 1 ) = X ) |
| 27 |
8 11 26
|
mp2an |
|- ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 1 ) = X |
| 28 |
27
|
fveq2i |
|- ( b ` ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 1 ) ) = ( b ` X ) |
| 29 |
25 28
|
eqtri |
|- ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 1 ) = ( b ` X ) |
| 30 |
16
|
tpid2 |
|- 2 e. { 1 , 2 , 3 } |
| 31 |
|
fvco2 |
|- ( ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } Fn { 1 , 2 , 3 } /\ 2 e. { 1 , 2 , 3 } ) -> ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 2 ) = ( b ` ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 2 ) ) ) |
| 32 |
22 30 31
|
mp2an |
|- ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 2 ) = ( b ` ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 2 ) ) |
| 33 |
16 19
|
fvtp2 |
|- ( ( 1 =/= 2 /\ 2 =/= 3 ) -> ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 2 ) = Y ) |
| 34 |
8 14 33
|
mp2an |
|- ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 2 ) = Y |
| 35 |
34
|
fveq2i |
|- ( b ` ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 2 ) ) = ( b ` Y ) |
| 36 |
32 35
|
eqtri |
|- ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 2 ) = ( b ` Y ) |
| 37 |
17
|
tpid3 |
|- 3 e. { 1 , 2 , 3 } |
| 38 |
|
fvco2 |
|- ( ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } Fn { 1 , 2 , 3 } /\ 3 e. { 1 , 2 , 3 } ) -> ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 3 ) = ( b ` ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 3 ) ) ) |
| 39 |
22 37 38
|
mp2an |
|- ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 3 ) = ( b ` ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 3 ) ) |
| 40 |
17 20
|
fvtp3 |
|- ( ( 1 =/= 3 /\ 2 =/= 3 ) -> ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 3 ) = Z ) |
| 41 |
11 14 40
|
mp2an |
|- ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 3 ) = Z |
| 42 |
41
|
fveq2i |
|- ( b ` ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 3 ) ) = ( b ` Z ) |
| 43 |
39 42
|
eqtri |
|- ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 3 ) = ( b ` Z ) |
| 44 |
29 36 43
|
3pm3.2i |
|- ( ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 1 ) = ( b ` X ) /\ ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 2 ) = ( b ` Y ) /\ ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 3 ) = ( b ` Z ) ) |
| 45 |
|
fveq1 |
|- ( a = ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) -> ( a ` 1 ) = ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 1 ) ) |
| 46 |
45
|
eqeq1d |
|- ( a = ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) -> ( ( a ` 1 ) = ( b ` X ) <-> ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 1 ) = ( b ` X ) ) ) |
| 47 |
|
fveq1 |
|- ( a = ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) -> ( a ` 2 ) = ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 2 ) ) |
| 48 |
47
|
eqeq1d |
|- ( a = ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) -> ( ( a ` 2 ) = ( b ` Y ) <-> ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 2 ) = ( b ` Y ) ) ) |
| 49 |
|
fveq1 |
|- ( a = ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) -> ( a ` 3 ) = ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 3 ) ) |
| 50 |
49
|
eqeq1d |
|- ( a = ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) -> ( ( a ` 3 ) = ( b ` Z ) <-> ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 3 ) = ( b ` Z ) ) ) |
| 51 |
46 48 50
|
3anbi123d |
|- ( a = ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) -> ( ( ( a ` 1 ) = ( b ` X ) /\ ( a ` 2 ) = ( b ` Y ) /\ ( a ` 3 ) = ( b ` Z ) ) <-> ( ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 1 ) = ( b ` X ) /\ ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 2 ) = ( b ` Y ) /\ ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 3 ) = ( b ` Z ) ) ) ) |
| 52 |
44 51
|
mpbiri |
|- ( a = ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) -> ( ( a ` 1 ) = ( b ` X ) /\ ( a ` 2 ) = ( b ` Y ) /\ ( a ` 3 ) = ( b ` Z ) ) ) |
| 53 |
52 1
|
syl |
|- ( a = ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) -> ( ph <-> ps ) ) |
| 54 |
7 53
|
sbcie |
|- ( [. ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) / a ]. ph <-> ps ) |
| 55 |
54
|
rabbii |
|- { b e. ( NN0 ^m ( 1 ... N ) ) | [. ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) / a ]. ph } = { b e. ( NN0 ^m ( 1 ... N ) ) | ps } |
| 56 |
15 16 17 18 19 20 8 11 14
|
ftp |
|- { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } : { 1 , 2 , 3 } --> { X , Y , Z } |
| 57 |
|
1z |
|- 1 e. ZZ |
| 58 |
|
fztp |
|- ( 1 e. ZZ -> ( 1 ... ( 1 + 2 ) ) = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } ) |
| 59 |
57 58
|
ax-mp |
|- ( 1 ... ( 1 + 2 ) ) = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } |
| 60 |
|
1p2e3 |
|- ( 1 + 2 ) = 3 |
| 61 |
60
|
oveq2i |
|- ( 1 ... ( 1 + 2 ) ) = ( 1 ... 3 ) |
| 62 |
|
eqidd |
|- ( 1 e. ZZ -> 1 = 1 ) |
| 63 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 64 |
63
|
a1i |
|- ( 1 e. ZZ -> ( 1 + 1 ) = 2 ) |
| 65 |
60
|
a1i |
|- ( 1 e. ZZ -> ( 1 + 2 ) = 3 ) |
| 66 |
62 64 65
|
tpeq123d |
|- ( 1 e. ZZ -> { 1 , ( 1 + 1 ) , ( 1 + 2 ) } = { 1 , 2 , 3 } ) |
| 67 |
57 66
|
ax-mp |
|- { 1 , ( 1 + 1 ) , ( 1 + 2 ) } = { 1 , 2 , 3 } |
| 68 |
59 61 67
|
3eqtr3i |
|- ( 1 ... 3 ) = { 1 , 2 , 3 } |
| 69 |
68
|
feq2i |
|- ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } : ( 1 ... 3 ) --> { X , Y , Z } <-> { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } : { 1 , 2 , 3 } --> { X , Y , Z } ) |
| 70 |
56 69
|
mpbir |
|- { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } : ( 1 ... 3 ) --> { X , Y , Z } |
| 71 |
2 3 4
|
3pm3.2i |
|- ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ Z e. ( 1 ... N ) ) |
| 72 |
18 19 20
|
tpss |
|- ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ Z e. ( 1 ... N ) ) <-> { X , Y , Z } C_ ( 1 ... N ) ) |
| 73 |
71 72
|
mpbi |
|- { X , Y , Z } C_ ( 1 ... N ) |
| 74 |
|
fss |
|- ( ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } : ( 1 ... 3 ) --> { X , Y , Z } /\ { X , Y , Z } C_ ( 1 ... N ) ) -> { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } : ( 1 ... 3 ) --> ( 1 ... N ) ) |
| 75 |
70 73 74
|
mp2an |
|- { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } : ( 1 ... 3 ) --> ( 1 ... N ) |
| 76 |
|
rabrenfdioph |
|- ( ( N e. NN0 /\ { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } : ( 1 ... 3 ) --> ( 1 ... N ) /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ph } e. ( Dioph ` 3 ) ) -> { b e. ( NN0 ^m ( 1 ... N ) ) | [. ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) / a ]. ph } e. ( Dioph ` N ) ) |
| 77 |
75 76
|
mp3an2 |
|- ( ( N e. NN0 /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ph } e. ( Dioph ` 3 ) ) -> { b e. ( NN0 ^m ( 1 ... N ) ) | [. ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) / a ]. ph } e. ( Dioph ` N ) ) |
| 78 |
55 77
|
eqeltrrid |
|- ( ( N e. NN0 /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ph } e. ( Dioph ` 3 ) ) -> { b e. ( NN0 ^m ( 1 ... N ) ) | ps } e. ( Dioph ` N ) ) |