| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rabren3dioph.a |  |-  ( ( ( a ` 1 ) = ( b ` X ) /\ ( a ` 2 ) = ( b ` Y ) /\ ( a ` 3 ) = ( b ` Z ) ) -> ( ph <-> ps ) ) | 
						
							| 2 |  | rabren3dioph.b |  |-  X e. ( 1 ... N ) | 
						
							| 3 |  | rabren3dioph.c |  |-  Y e. ( 1 ... N ) | 
						
							| 4 |  | rabren3dioph.d |  |-  Z e. ( 1 ... N ) | 
						
							| 5 |  | vex |  |-  b e. _V | 
						
							| 6 |  | tpex |  |-  { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } e. _V | 
						
							| 7 | 5 6 | coex |  |-  ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) e. _V | 
						
							| 8 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 9 |  | 1re |  |-  1 e. RR | 
						
							| 10 |  | 1lt3 |  |-  1 < 3 | 
						
							| 11 | 9 10 | ltneii |  |-  1 =/= 3 | 
						
							| 12 |  | 2re |  |-  2 e. RR | 
						
							| 13 |  | 2lt3 |  |-  2 < 3 | 
						
							| 14 | 12 13 | ltneii |  |-  2 =/= 3 | 
						
							| 15 |  | 1ex |  |-  1 e. _V | 
						
							| 16 |  | 2ex |  |-  2 e. _V | 
						
							| 17 |  | 3ex |  |-  3 e. _V | 
						
							| 18 | 2 | elexi |  |-  X e. _V | 
						
							| 19 | 3 | elexi |  |-  Y e. _V | 
						
							| 20 | 4 | elexi |  |-  Z e. _V | 
						
							| 21 | 15 16 17 18 19 20 | fntp |  |-  ( ( 1 =/= 2 /\ 1 =/= 3 /\ 2 =/= 3 ) -> { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } Fn { 1 , 2 , 3 } ) | 
						
							| 22 | 8 11 14 21 | mp3an |  |-  { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } Fn { 1 , 2 , 3 } | 
						
							| 23 | 15 | tpid1 |  |-  1 e. { 1 , 2 , 3 } | 
						
							| 24 |  | fvco2 |  |-  ( ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } Fn { 1 , 2 , 3 } /\ 1 e. { 1 , 2 , 3 } ) -> ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 1 ) = ( b ` ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 1 ) ) ) | 
						
							| 25 | 22 23 24 | mp2an |  |-  ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 1 ) = ( b ` ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 1 ) ) | 
						
							| 26 | 15 18 | fvtp1 |  |-  ( ( 1 =/= 2 /\ 1 =/= 3 ) -> ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 1 ) = X ) | 
						
							| 27 | 8 11 26 | mp2an |  |-  ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 1 ) = X | 
						
							| 28 | 27 | fveq2i |  |-  ( b ` ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 1 ) ) = ( b ` X ) | 
						
							| 29 | 25 28 | eqtri |  |-  ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 1 ) = ( b ` X ) | 
						
							| 30 | 16 | tpid2 |  |-  2 e. { 1 , 2 , 3 } | 
						
							| 31 |  | fvco2 |  |-  ( ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } Fn { 1 , 2 , 3 } /\ 2 e. { 1 , 2 , 3 } ) -> ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 2 ) = ( b ` ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 2 ) ) ) | 
						
							| 32 | 22 30 31 | mp2an |  |-  ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 2 ) = ( b ` ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 2 ) ) | 
						
							| 33 | 16 19 | fvtp2 |  |-  ( ( 1 =/= 2 /\ 2 =/= 3 ) -> ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 2 ) = Y ) | 
						
							| 34 | 8 14 33 | mp2an |  |-  ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 2 ) = Y | 
						
							| 35 | 34 | fveq2i |  |-  ( b ` ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 2 ) ) = ( b ` Y ) | 
						
							| 36 | 32 35 | eqtri |  |-  ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 2 ) = ( b ` Y ) | 
						
							| 37 | 17 | tpid3 |  |-  3 e. { 1 , 2 , 3 } | 
						
							| 38 |  | fvco2 |  |-  ( ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } Fn { 1 , 2 , 3 } /\ 3 e. { 1 , 2 , 3 } ) -> ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 3 ) = ( b ` ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 3 ) ) ) | 
						
							| 39 | 22 37 38 | mp2an |  |-  ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 3 ) = ( b ` ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 3 ) ) | 
						
							| 40 | 17 20 | fvtp3 |  |-  ( ( 1 =/= 3 /\ 2 =/= 3 ) -> ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 3 ) = Z ) | 
						
							| 41 | 11 14 40 | mp2an |  |-  ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 3 ) = Z | 
						
							| 42 | 41 | fveq2i |  |-  ( b ` ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ` 3 ) ) = ( b ` Z ) | 
						
							| 43 | 39 42 | eqtri |  |-  ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 3 ) = ( b ` Z ) | 
						
							| 44 | 29 36 43 | 3pm3.2i |  |-  ( ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 1 ) = ( b ` X ) /\ ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 2 ) = ( b ` Y ) /\ ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 3 ) = ( b ` Z ) ) | 
						
							| 45 |  | fveq1 |  |-  ( a = ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) -> ( a ` 1 ) = ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 1 ) ) | 
						
							| 46 | 45 | eqeq1d |  |-  ( a = ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) -> ( ( a ` 1 ) = ( b ` X ) <-> ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 1 ) = ( b ` X ) ) ) | 
						
							| 47 |  | fveq1 |  |-  ( a = ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) -> ( a ` 2 ) = ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 2 ) ) | 
						
							| 48 | 47 | eqeq1d |  |-  ( a = ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) -> ( ( a ` 2 ) = ( b ` Y ) <-> ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 2 ) = ( b ` Y ) ) ) | 
						
							| 49 |  | fveq1 |  |-  ( a = ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) -> ( a ` 3 ) = ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 3 ) ) | 
						
							| 50 | 49 | eqeq1d |  |-  ( a = ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) -> ( ( a ` 3 ) = ( b ` Z ) <-> ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 3 ) = ( b ` Z ) ) ) | 
						
							| 51 | 46 48 50 | 3anbi123d |  |-  ( a = ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) -> ( ( ( a ` 1 ) = ( b ` X ) /\ ( a ` 2 ) = ( b ` Y ) /\ ( a ` 3 ) = ( b ` Z ) ) <-> ( ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 1 ) = ( b ` X ) /\ ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 2 ) = ( b ` Y ) /\ ( ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) ` 3 ) = ( b ` Z ) ) ) ) | 
						
							| 52 | 44 51 | mpbiri |  |-  ( a = ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) -> ( ( a ` 1 ) = ( b ` X ) /\ ( a ` 2 ) = ( b ` Y ) /\ ( a ` 3 ) = ( b ` Z ) ) ) | 
						
							| 53 | 52 1 | syl |  |-  ( a = ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) -> ( ph <-> ps ) ) | 
						
							| 54 | 7 53 | sbcie |  |-  ( [. ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) / a ]. ph <-> ps ) | 
						
							| 55 | 54 | rabbii |  |-  { b e. ( NN0 ^m ( 1 ... N ) ) | [. ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) / a ]. ph } = { b e. ( NN0 ^m ( 1 ... N ) ) | ps } | 
						
							| 56 | 15 16 17 18 19 20 8 11 14 | ftp |  |-  { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } : { 1 , 2 , 3 } --> { X , Y , Z } | 
						
							| 57 |  | 1z |  |-  1 e. ZZ | 
						
							| 58 |  | fztp |  |-  ( 1 e. ZZ -> ( 1 ... ( 1 + 2 ) ) = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } ) | 
						
							| 59 | 57 58 | ax-mp |  |-  ( 1 ... ( 1 + 2 ) ) = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } | 
						
							| 60 |  | 1p2e3 |  |-  ( 1 + 2 ) = 3 | 
						
							| 61 | 60 | oveq2i |  |-  ( 1 ... ( 1 + 2 ) ) = ( 1 ... 3 ) | 
						
							| 62 |  | eqidd |  |-  ( 1 e. ZZ -> 1 = 1 ) | 
						
							| 63 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 64 | 63 | a1i |  |-  ( 1 e. ZZ -> ( 1 + 1 ) = 2 ) | 
						
							| 65 | 60 | a1i |  |-  ( 1 e. ZZ -> ( 1 + 2 ) = 3 ) | 
						
							| 66 | 62 64 65 | tpeq123d |  |-  ( 1 e. ZZ -> { 1 , ( 1 + 1 ) , ( 1 + 2 ) } = { 1 , 2 , 3 } ) | 
						
							| 67 | 57 66 | ax-mp |  |-  { 1 , ( 1 + 1 ) , ( 1 + 2 ) } = { 1 , 2 , 3 } | 
						
							| 68 | 59 61 67 | 3eqtr3i |  |-  ( 1 ... 3 ) = { 1 , 2 , 3 } | 
						
							| 69 | 68 | feq2i |  |-  ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } : ( 1 ... 3 ) --> { X , Y , Z } <-> { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } : { 1 , 2 , 3 } --> { X , Y , Z } ) | 
						
							| 70 | 56 69 | mpbir |  |-  { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } : ( 1 ... 3 ) --> { X , Y , Z } | 
						
							| 71 | 2 3 4 | 3pm3.2i |  |-  ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ Z e. ( 1 ... N ) ) | 
						
							| 72 | 18 19 20 | tpss |  |-  ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ Z e. ( 1 ... N ) ) <-> { X , Y , Z } C_ ( 1 ... N ) ) | 
						
							| 73 | 71 72 | mpbi |  |-  { X , Y , Z } C_ ( 1 ... N ) | 
						
							| 74 |  | fss |  |-  ( ( { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } : ( 1 ... 3 ) --> { X , Y , Z } /\ { X , Y , Z } C_ ( 1 ... N ) ) -> { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } : ( 1 ... 3 ) --> ( 1 ... N ) ) | 
						
							| 75 | 70 73 74 | mp2an |  |-  { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } : ( 1 ... 3 ) --> ( 1 ... N ) | 
						
							| 76 |  | rabrenfdioph |  |-  ( ( N e. NN0 /\ { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } : ( 1 ... 3 ) --> ( 1 ... N ) /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ph } e. ( Dioph ` 3 ) ) -> { b e. ( NN0 ^m ( 1 ... N ) ) | [. ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) / a ]. ph } e. ( Dioph ` N ) ) | 
						
							| 77 | 75 76 | mp3an2 |  |-  ( ( N e. NN0 /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ph } e. ( Dioph ` 3 ) ) -> { b e. ( NN0 ^m ( 1 ... N ) ) | [. ( b o. { <. 1 , X >. , <. 2 , Y >. , <. 3 , Z >. } ) / a ]. ph } e. ( Dioph ` N ) ) | 
						
							| 78 | 55 77 | eqeltrrid |  |-  ( ( N e. NN0 /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ph } e. ( Dioph ` 3 ) ) -> { b e. ( NN0 ^m ( 1 ... N ) ) | ps } e. ( Dioph ` N ) ) |