| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ramub1.m |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | ramub1.r |  |-  ( ph -> R e. Fin ) | 
						
							| 3 |  | ramub1.f |  |-  ( ph -> F : R --> NN ) | 
						
							| 4 |  | ramub1.g |  |-  G = ( x e. R |-> ( M Ramsey ( y e. R |-> if ( y = x , ( ( F ` x ) - 1 ) , ( F ` y ) ) ) ) ) | 
						
							| 5 |  | ramub1.1 |  |-  ( ph -> G : R --> NN0 ) | 
						
							| 6 |  | ramub1.2 |  |-  ( ph -> ( ( M - 1 ) Ramsey G ) e. NN0 ) | 
						
							| 7 |  | eqid |  |-  ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) | 
						
							| 8 | 1 | nnnn0d |  |-  ( ph -> M e. NN0 ) | 
						
							| 9 |  | nnssnn0 |  |-  NN C_ NN0 | 
						
							| 10 |  | fss |  |-  ( ( F : R --> NN /\ NN C_ NN0 ) -> F : R --> NN0 ) | 
						
							| 11 | 3 9 10 | sylancl |  |-  ( ph -> F : R --> NN0 ) | 
						
							| 12 |  | peano2nn0 |  |-  ( ( ( M - 1 ) Ramsey G ) e. NN0 -> ( ( ( M - 1 ) Ramsey G ) + 1 ) e. NN0 ) | 
						
							| 13 | 6 12 | syl |  |-  ( ph -> ( ( ( M - 1 ) Ramsey G ) + 1 ) e. NN0 ) | 
						
							| 14 |  | simprl |  |-  ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) ) | 
						
							| 15 | 6 | adantr |  |-  ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( ( M - 1 ) Ramsey G ) e. NN0 ) | 
						
							| 16 |  | nn0p1nn |  |-  ( ( ( M - 1 ) Ramsey G ) e. NN0 -> ( ( ( M - 1 ) Ramsey G ) + 1 ) e. NN ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( ( ( M - 1 ) Ramsey G ) + 1 ) e. NN ) | 
						
							| 18 | 14 17 | eqeltrd |  |-  ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( # ` s ) e. NN ) | 
						
							| 19 | 18 | nnnn0d |  |-  ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( # ` s ) e. NN0 ) | 
						
							| 20 |  | hashclb |  |-  ( s e. _V -> ( s e. Fin <-> ( # ` s ) e. NN0 ) ) | 
						
							| 21 | 20 | elv |  |-  ( s e. Fin <-> ( # ` s ) e. NN0 ) | 
						
							| 22 | 19 21 | sylibr |  |-  ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> s e. Fin ) | 
						
							| 23 |  | hashnncl |  |-  ( s e. Fin -> ( ( # ` s ) e. NN <-> s =/= (/) ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( ( # ` s ) e. NN <-> s =/= (/) ) ) | 
						
							| 25 | 18 24 | mpbid |  |-  ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> s =/= (/) ) | 
						
							| 26 |  | n0 |  |-  ( s =/= (/) <-> E. w w e. s ) | 
						
							| 27 | 25 26 | sylib |  |-  ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> E. w w e. s ) | 
						
							| 28 | 1 | adantr |  |-  ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> M e. NN ) | 
						
							| 29 | 2 | adantr |  |-  ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> R e. Fin ) | 
						
							| 30 | 3 | adantr |  |-  ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> F : R --> NN ) | 
						
							| 31 | 5 | adantr |  |-  ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> G : R --> NN0 ) | 
						
							| 32 | 6 | adantr |  |-  ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> ( ( M - 1 ) Ramsey G ) e. NN0 ) | 
						
							| 33 | 22 | adantrr |  |-  ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> s e. Fin ) | 
						
							| 34 |  | simprll |  |-  ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) ) | 
						
							| 35 |  | simprlr |  |-  ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) | 
						
							| 36 |  | simprr |  |-  ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> w e. s ) | 
						
							| 37 |  | uneq1 |  |-  ( v = u -> ( v u. { w } ) = ( u u. { w } ) ) | 
						
							| 38 | 37 | fveq2d |  |-  ( v = u -> ( f ` ( v u. { w } ) ) = ( f ` ( u u. { w } ) ) ) | 
						
							| 39 | 38 | cbvmptv |  |-  ( v e. ( ( s \ { w } ) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) ( M - 1 ) ) |-> ( f ` ( v u. { w } ) ) ) = ( u e. ( ( s \ { w } ) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) ( M - 1 ) ) |-> ( f ` ( u u. { w } ) ) ) | 
						
							| 40 | 28 29 30 4 31 32 7 33 34 35 36 39 | ramub1lem2 |  |-  ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> E. c e. R E. z e. ~P s ( ( F ` c ) <_ ( # ` z ) /\ ( z ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) ) ) | 
						
							| 41 | 40 | expr |  |-  ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( w e. s -> E. c e. R E. z e. ~P s ( ( F ` c ) <_ ( # ` z ) /\ ( z ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) ) ) ) | 
						
							| 42 | 41 | exlimdv |  |-  ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( E. w w e. s -> E. c e. R E. z e. ~P s ( ( F ` c ) <_ ( # ` z ) /\ ( z ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) ) ) ) | 
						
							| 43 | 27 42 | mpd |  |-  ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> E. c e. R E. z e. ~P s ( ( F ` c ) <_ ( # ` z ) /\ ( z ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) ) ) | 
						
							| 44 | 7 8 2 11 13 43 | ramub2 |  |-  ( ph -> ( M Ramsey F ) <_ ( ( ( M - 1 ) Ramsey G ) + 1 ) ) |