| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ramub1.m |
|
| 2 |
|
ramub1.r |
|
| 3 |
|
ramub1.f |
|
| 4 |
|
ramub1.g |
|
| 5 |
|
ramub1.1 |
|
| 6 |
|
ramub1.2 |
|
| 7 |
|
eqid |
|
| 8 |
1
|
nnnn0d |
|
| 9 |
|
nnssnn0 |
|
| 10 |
|
fss |
|
| 11 |
3 9 10
|
sylancl |
|
| 12 |
|
peano2nn0 |
|
| 13 |
6 12
|
syl |
|
| 14 |
|
simprl |
|
| 15 |
6
|
adantr |
|
| 16 |
|
nn0p1nn |
|
| 17 |
15 16
|
syl |
|
| 18 |
14 17
|
eqeltrd |
|
| 19 |
18
|
nnnn0d |
|
| 20 |
|
hashclb |
|
| 21 |
20
|
elv |
|
| 22 |
19 21
|
sylibr |
|
| 23 |
|
hashnncl |
|
| 24 |
22 23
|
syl |
|
| 25 |
18 24
|
mpbid |
|
| 26 |
|
n0 |
|
| 27 |
25 26
|
sylib |
|
| 28 |
1
|
adantr |
|
| 29 |
2
|
adantr |
|
| 30 |
3
|
adantr |
|
| 31 |
5
|
adantr |
|
| 32 |
6
|
adantr |
|
| 33 |
22
|
adantrr |
|
| 34 |
|
simprll |
|
| 35 |
|
simprlr |
|
| 36 |
|
simprr |
|
| 37 |
|
uneq1 |
|
| 38 |
37
|
fveq2d |
|
| 39 |
38
|
cbvmptv |
|
| 40 |
28 29 30 4 31 32 7 33 34 35 36 39
|
ramub1lem2 |
|
| 41 |
40
|
expr |
|
| 42 |
41
|
exlimdv |
|
| 43 |
27 42
|
mpd |
|
| 44 |
7 8 2 11 13 43
|
ramub2 |
|