| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ramub1.m |  | 
						
							| 2 |  | ramub1.r |  | 
						
							| 3 |  | ramub1.f |  | 
						
							| 4 |  | ramub1.g |  | 
						
							| 5 |  | ramub1.1 |  | 
						
							| 6 |  | ramub1.2 |  | 
						
							| 7 |  | ramub1.3 |  | 
						
							| 8 |  | ramub1.4 |  | 
						
							| 9 |  | ramub1.5 |  | 
						
							| 10 |  | ramub1.6 |  | 
						
							| 11 |  | ramub1.x |  | 
						
							| 12 |  | ramub1.h |  | 
						
							| 13 |  | nnm1nn0 |  | 
						
							| 14 | 1 13 | syl |  | 
						
							| 15 |  | diffi |  | 
						
							| 16 | 8 15 | syl |  | 
						
							| 17 | 6 | nn0red |  | 
						
							| 18 | 17 | leidd |  | 
						
							| 19 |  | hashcl |  | 
						
							| 20 | 16 19 | syl |  | 
						
							| 21 | 20 | nn0cnd |  | 
						
							| 22 | 6 | nn0cnd |  | 
						
							| 23 |  | 1cnd |  | 
						
							| 24 |  | undif1 |  | 
						
							| 25 | 11 | snssd |  | 
						
							| 26 |  | ssequn2 |  | 
						
							| 27 | 25 26 | sylib |  | 
						
							| 28 | 24 27 | eqtrid |  | 
						
							| 29 | 28 | fveq2d |  | 
						
							| 30 |  | neldifsnd |  | 
						
							| 31 |  | hashunsng |  | 
						
							| 32 | 11 31 | syl |  | 
						
							| 33 | 16 30 32 | mp2and |  | 
						
							| 34 | 29 33 9 | 3eqtr3d |  | 
						
							| 35 | 21 22 23 34 | addcan2ad |  | 
						
							| 36 | 18 35 | breqtrrd |  | 
						
							| 37 | 10 | adantr |  | 
						
							| 38 |  | fveqeq2 |  | 
						
							| 39 | 7 | hashbcval |  | 
						
							| 40 | 16 14 39 | syl2anc |  | 
						
							| 41 | 40 | eleq2d |  | 
						
							| 42 |  | fveqeq2 |  | 
						
							| 43 | 42 | elrab |  | 
						
							| 44 | 41 43 | bitrdi |  | 
						
							| 45 | 44 | simprbda |  | 
						
							| 46 | 45 | elpwid |  | 
						
							| 47 | 46 | difss2d |  | 
						
							| 48 | 25 | adantr |  | 
						
							| 49 | 47 48 | unssd |  | 
						
							| 50 |  | vex |  | 
						
							| 51 |  | snex |  | 
						
							| 52 | 50 51 | unex |  | 
						
							| 53 | 52 | elpw |  | 
						
							| 54 | 49 53 | sylibr |  | 
						
							| 55 | 16 | adantr |  | 
						
							| 56 | 55 46 | ssfid |  | 
						
							| 57 |  | neldifsnd |  | 
						
							| 58 | 46 57 | ssneldd |  | 
						
							| 59 | 11 | adantr |  | 
						
							| 60 |  | hashunsng |  | 
						
							| 61 | 59 60 | syl |  | 
						
							| 62 | 56 58 61 | mp2and |  | 
						
							| 63 | 44 | simplbda |  | 
						
							| 64 | 63 | oveq1d |  | 
						
							| 65 | 1 | nncnd |  | 
						
							| 66 |  | ax-1cn |  | 
						
							| 67 |  | npcan |  | 
						
							| 68 | 65 66 67 | sylancl |  | 
						
							| 69 | 68 | adantr |  | 
						
							| 70 | 62 64 69 | 3eqtrd |  | 
						
							| 71 | 38 54 70 | elrabd |  | 
						
							| 72 | 1 | nnnn0d |  | 
						
							| 73 | 7 | hashbcval |  | 
						
							| 74 | 8 72 73 | syl2anc |  | 
						
							| 75 | 74 | adantr |  | 
						
							| 76 | 71 75 | eleqtrrd |  | 
						
							| 77 | 37 76 | ffvelcdmd |  | 
						
							| 78 | 77 12 | fmptd |  | 
						
							| 79 | 7 14 2 5 6 16 36 78 | rami |  | 
						
							| 80 | 72 | adantr |  | 
						
							| 81 | 2 | adantr |  | 
						
							| 82 | 3 | adantr |  | 
						
							| 83 |  | simprll |  | 
						
							| 84 | 82 83 | ffvelcdmd |  | 
						
							| 85 |  | nnm1nn0 |  | 
						
							| 86 | 84 85 | syl |  | 
						
							| 87 | 86 | adantr |  | 
						
							| 88 | 82 | ffvelcdmda |  | 
						
							| 89 | 88 | nnnn0d |  | 
						
							| 90 | 87 89 | ifcld |  | 
						
							| 91 |  | eqid |  | 
						
							| 92 | 90 91 | fmptd |  | 
						
							| 93 |  | equequ2 |  | 
						
							| 94 |  | fveq2 |  | 
						
							| 95 | 94 | oveq1d |  | 
						
							| 96 | 93 95 | ifbieq1d |  | 
						
							| 97 | 96 | mpteq2dv |  | 
						
							| 98 | 97 | oveq2d |  | 
						
							| 99 |  | ovex |  | 
						
							| 100 | 98 4 99 | fvmpt |  | 
						
							| 101 | 83 100 | syl |  | 
						
							| 102 | 5 | adantr |  | 
						
							| 103 | 102 83 | ffvelcdmd |  | 
						
							| 104 | 101 103 | eqeltrrd |  | 
						
							| 105 |  | simprlr |  | 
						
							| 106 |  | simprrl |  | 
						
							| 107 | 101 106 | eqbrtrrd |  | 
						
							| 108 | 10 | adantr |  | 
						
							| 109 | 8 | adantr |  | 
						
							| 110 | 105 | elpwid |  | 
						
							| 111 | 110 | difss2d |  | 
						
							| 112 | 7 | hashbcss |  | 
						
							| 113 | 109 111 80 112 | syl3anc |  | 
						
							| 114 | 108 113 | fssresd |  | 
						
							| 115 | 7 80 81 92 104 105 107 114 | rami |  | 
						
							| 116 |  | equequ1 |  | 
						
							| 117 |  | fveq2 |  | 
						
							| 118 | 116 117 | ifbieq2d |  | 
						
							| 119 |  | ovex |  | 
						
							| 120 |  | fvex |  | 
						
							| 121 | 119 120 | ifex |  | 
						
							| 122 | 118 91 121 | fvmpt |  | 
						
							| 123 | 122 | ad2antrl |  | 
						
							| 124 | 123 | breq1d |  | 
						
							| 125 | 124 | anbi1d |  | 
						
							| 126 | 1 | ad2antrr |  | 
						
							| 127 | 2 | ad2antrr |  | 
						
							| 128 | 3 | ad2antrr |  | 
						
							| 129 | 5 | ad2antrr |  | 
						
							| 130 | 6 | ad2antrr |  | 
						
							| 131 | 8 | ad2antrr |  | 
						
							| 132 | 9 | ad2antrr |  | 
						
							| 133 | 10 | ad2antrr |  | 
						
							| 134 | 11 | ad2antrr |  | 
						
							| 135 | 83 | adantr |  | 
						
							| 136 | 110 | adantr |  | 
						
							| 137 | 106 | adantr |  | 
						
							| 138 |  | simprrr |  | 
						
							| 139 | 138 | adantr |  | 
						
							| 140 |  | simprll |  | 
						
							| 141 |  | simprlr |  | 
						
							| 142 | 141 | elpwid |  | 
						
							| 143 |  | simprrl |  | 
						
							| 144 |  | simprrr |  | 
						
							| 145 |  | cnvresima |  | 
						
							| 146 |  | inss1 |  | 
						
							| 147 | 145 146 | eqsstri |  | 
						
							| 148 | 144 147 | sstrdi |  | 
						
							| 149 | 126 127 128 4 129 130 7 131 132 133 134 12 135 136 137 139 140 142 143 148 | ramub1lem1 |  | 
						
							| 150 | 149 | expr |  | 
						
							| 151 | 125 150 | sylbid |  | 
						
							| 152 | 151 | anassrs |  | 
						
							| 153 | 152 | rexlimdva |  | 
						
							| 154 | 153 | reximdva |  | 
						
							| 155 | 115 154 | mpd |  | 
						
							| 156 | 155 | expr |  | 
						
							| 157 | 156 | rexlimdvva |  | 
						
							| 158 | 79 157 | mpd |  |