| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ramub1.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | ramub1.r | ⊢ ( 𝜑  →  𝑅  ∈  Fin ) | 
						
							| 3 |  | ramub1.f | ⊢ ( 𝜑  →  𝐹 : 𝑅 ⟶ ℕ ) | 
						
							| 4 |  | ramub1.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝑅  ↦  ( 𝑀  Ramsey  ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑥 ,  ( ( 𝐹 ‘ 𝑥 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 5 |  | ramub1.1 | ⊢ ( 𝜑  →  𝐺 : 𝑅 ⟶ ℕ0 ) | 
						
							| 6 |  | ramub1.2 | ⊢ ( 𝜑  →  ( ( 𝑀  −  1 )  Ramsey  𝐺 )  ∈  ℕ0 ) | 
						
							| 7 |  | ramub1.3 | ⊢ 𝐶  =  ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) | 
						
							| 8 |  | ramub1.4 | ⊢ ( 𝜑  →  𝑆  ∈  Fin ) | 
						
							| 9 |  | ramub1.5 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑆 )  =  ( ( ( 𝑀  −  1 )  Ramsey  𝐺 )  +  1 ) ) | 
						
							| 10 |  | ramub1.6 | ⊢ ( 𝜑  →  𝐾 : ( 𝑆 𝐶 𝑀 ) ⟶ 𝑅 ) | 
						
							| 11 |  | ramub1.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑆 ) | 
						
							| 12 |  | ramub1.h | ⊢ 𝐻  =  ( 𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) )  ↦  ( 𝐾 ‘ ( 𝑢  ∪  { 𝑋 } ) ) ) | 
						
							| 13 |  | nnm1nn0 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  −  1 )  ∈  ℕ0 ) | 
						
							| 14 | 1 13 | syl | ⊢ ( 𝜑  →  ( 𝑀  −  1 )  ∈  ℕ0 ) | 
						
							| 15 |  | diffi | ⊢ ( 𝑆  ∈  Fin  →  ( 𝑆  ∖  { 𝑋 } )  ∈  Fin ) | 
						
							| 16 | 8 15 | syl | ⊢ ( 𝜑  →  ( 𝑆  ∖  { 𝑋 } )  ∈  Fin ) | 
						
							| 17 | 6 | nn0red | ⊢ ( 𝜑  →  ( ( 𝑀  −  1 )  Ramsey  𝐺 )  ∈  ℝ ) | 
						
							| 18 | 17 | leidd | ⊢ ( 𝜑  →  ( ( 𝑀  −  1 )  Ramsey  𝐺 )  ≤  ( ( 𝑀  −  1 )  Ramsey  𝐺 ) ) | 
						
							| 19 |  | hashcl | ⊢ ( ( 𝑆  ∖  { 𝑋 } )  ∈  Fin  →  ( ♯ ‘ ( 𝑆  ∖  { 𝑋 } ) )  ∈  ℕ0 ) | 
						
							| 20 | 16 19 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑆  ∖  { 𝑋 } ) )  ∈  ℕ0 ) | 
						
							| 21 | 20 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑆  ∖  { 𝑋 } ) )  ∈  ℂ ) | 
						
							| 22 | 6 | nn0cnd | ⊢ ( 𝜑  →  ( ( 𝑀  −  1 )  Ramsey  𝐺 )  ∈  ℂ ) | 
						
							| 23 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 24 |  | undif1 | ⊢ ( ( 𝑆  ∖  { 𝑋 } )  ∪  { 𝑋 } )  =  ( 𝑆  ∪  { 𝑋 } ) | 
						
							| 25 | 11 | snssd | ⊢ ( 𝜑  →  { 𝑋 }  ⊆  𝑆 ) | 
						
							| 26 |  | ssequn2 | ⊢ ( { 𝑋 }  ⊆  𝑆  ↔  ( 𝑆  ∪  { 𝑋 } )  =  𝑆 ) | 
						
							| 27 | 25 26 | sylib | ⊢ ( 𝜑  →  ( 𝑆  ∪  { 𝑋 } )  =  𝑆 ) | 
						
							| 28 | 24 27 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝑆  ∖  { 𝑋 } )  ∪  { 𝑋 } )  =  𝑆 ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑆  ∖  { 𝑋 } )  ∪  { 𝑋 } ) )  =  ( ♯ ‘ 𝑆 ) ) | 
						
							| 30 |  | neldifsnd | ⊢ ( 𝜑  →  ¬  𝑋  ∈  ( 𝑆  ∖  { 𝑋 } ) ) | 
						
							| 31 |  | hashunsng | ⊢ ( 𝑋  ∈  𝑆  →  ( ( ( 𝑆  ∖  { 𝑋 } )  ∈  Fin  ∧  ¬  𝑋  ∈  ( 𝑆  ∖  { 𝑋 } ) )  →  ( ♯ ‘ ( ( 𝑆  ∖  { 𝑋 } )  ∪  { 𝑋 } ) )  =  ( ( ♯ ‘ ( 𝑆  ∖  { 𝑋 } ) )  +  1 ) ) ) | 
						
							| 32 | 11 31 | syl | ⊢ ( 𝜑  →  ( ( ( 𝑆  ∖  { 𝑋 } )  ∈  Fin  ∧  ¬  𝑋  ∈  ( 𝑆  ∖  { 𝑋 } ) )  →  ( ♯ ‘ ( ( 𝑆  ∖  { 𝑋 } )  ∪  { 𝑋 } ) )  =  ( ( ♯ ‘ ( 𝑆  ∖  { 𝑋 } ) )  +  1 ) ) ) | 
						
							| 33 | 16 30 32 | mp2and | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑆  ∖  { 𝑋 } )  ∪  { 𝑋 } ) )  =  ( ( ♯ ‘ ( 𝑆  ∖  { 𝑋 } ) )  +  1 ) ) | 
						
							| 34 | 29 33 9 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝑆  ∖  { 𝑋 } ) )  +  1 )  =  ( ( ( 𝑀  −  1 )  Ramsey  𝐺 )  +  1 ) ) | 
						
							| 35 | 21 22 23 34 | addcan2ad | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑆  ∖  { 𝑋 } ) )  =  ( ( 𝑀  −  1 )  Ramsey  𝐺 ) ) | 
						
							| 36 | 18 35 | breqtrrd | ⊢ ( 𝜑  →  ( ( 𝑀  −  1 )  Ramsey  𝐺 )  ≤  ( ♯ ‘ ( 𝑆  ∖  { 𝑋 } ) ) ) | 
						
							| 37 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  𝐾 : ( 𝑆 𝐶 𝑀 ) ⟶ 𝑅 ) | 
						
							| 38 |  | fveqeq2 | ⊢ ( 𝑥  =  ( 𝑢  ∪  { 𝑋 } )  →  ( ( ♯ ‘ 𝑥 )  =  𝑀  ↔  ( ♯ ‘ ( 𝑢  ∪  { 𝑋 } ) )  =  𝑀 ) ) | 
						
							| 39 | 7 | hashbcval | ⊢ ( ( ( 𝑆  ∖  { 𝑋 } )  ∈  Fin  ∧  ( 𝑀  −  1 )  ∈  ℕ0 )  →  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) )  =  { 𝑥  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } )  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝑀  −  1 ) } ) | 
						
							| 40 | 16 14 39 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) )  =  { 𝑥  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } )  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝑀  −  1 ) } ) | 
						
							| 41 | 40 | eleq2d | ⊢ ( 𝜑  →  ( 𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) )  ↔  𝑢  ∈  { 𝑥  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } )  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝑀  −  1 ) } ) ) | 
						
							| 42 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑢  →  ( ( ♯ ‘ 𝑥 )  =  ( 𝑀  −  1 )  ↔  ( ♯ ‘ 𝑢 )  =  ( 𝑀  −  1 ) ) ) | 
						
							| 43 | 42 | elrab | ⊢ ( 𝑢  ∈  { 𝑥  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } )  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝑀  −  1 ) }  ↔  ( 𝑢  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } )  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑀  −  1 ) ) ) | 
						
							| 44 | 41 43 | bitrdi | ⊢ ( 𝜑  →  ( 𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) )  ↔  ( 𝑢  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } )  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑀  −  1 ) ) ) ) | 
						
							| 45 | 44 | simprbda | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  𝑢  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) ) | 
						
							| 46 | 45 | elpwid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  𝑢  ⊆  ( 𝑆  ∖  { 𝑋 } ) ) | 
						
							| 47 | 46 | difss2d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  𝑢  ⊆  𝑆 ) | 
						
							| 48 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  { 𝑋 }  ⊆  𝑆 ) | 
						
							| 49 | 47 48 | unssd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  ( 𝑢  ∪  { 𝑋 } )  ⊆  𝑆 ) | 
						
							| 50 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 51 |  | snex | ⊢ { 𝑋 }  ∈  V | 
						
							| 52 | 50 51 | unex | ⊢ ( 𝑢  ∪  { 𝑋 } )  ∈  V | 
						
							| 53 | 52 | elpw | ⊢ ( ( 𝑢  ∪  { 𝑋 } )  ∈  𝒫  𝑆  ↔  ( 𝑢  ∪  { 𝑋 } )  ⊆  𝑆 ) | 
						
							| 54 | 49 53 | sylibr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  ( 𝑢  ∪  { 𝑋 } )  ∈  𝒫  𝑆 ) | 
						
							| 55 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  ( 𝑆  ∖  { 𝑋 } )  ∈  Fin ) | 
						
							| 56 | 55 46 | ssfid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  𝑢  ∈  Fin ) | 
						
							| 57 |  | neldifsnd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  ¬  𝑋  ∈  ( 𝑆  ∖  { 𝑋 } ) ) | 
						
							| 58 | 46 57 | ssneldd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  ¬  𝑋  ∈  𝑢 ) | 
						
							| 59 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  𝑋  ∈  𝑆 ) | 
						
							| 60 |  | hashunsng | ⊢ ( 𝑋  ∈  𝑆  →  ( ( 𝑢  ∈  Fin  ∧  ¬  𝑋  ∈  𝑢 )  →  ( ♯ ‘ ( 𝑢  ∪  { 𝑋 } ) )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) | 
						
							| 61 | 59 60 | syl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  ( ( 𝑢  ∈  Fin  ∧  ¬  𝑋  ∈  𝑢 )  →  ( ♯ ‘ ( 𝑢  ∪  { 𝑋 } ) )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) | 
						
							| 62 | 56 58 61 | mp2and | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  ( ♯ ‘ ( 𝑢  ∪  { 𝑋 } ) )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) | 
						
							| 63 | 44 | simplbda | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  ( ♯ ‘ 𝑢 )  =  ( 𝑀  −  1 ) ) | 
						
							| 64 | 63 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  ( ( ♯ ‘ 𝑢 )  +  1 )  =  ( ( 𝑀  −  1 )  +  1 ) ) | 
						
							| 65 | 1 | nncnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 66 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 67 |  | npcan | ⊢ ( ( 𝑀  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑀  −  1 )  +  1 )  =  𝑀 ) | 
						
							| 68 | 65 66 67 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑀  −  1 )  +  1 )  =  𝑀 ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  ( ( 𝑀  −  1 )  +  1 )  =  𝑀 ) | 
						
							| 70 | 62 64 69 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  ( ♯ ‘ ( 𝑢  ∪  { 𝑋 } ) )  =  𝑀 ) | 
						
							| 71 | 38 54 70 | elrabd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  ( 𝑢  ∪  { 𝑋 } )  ∈  { 𝑥  ∈  𝒫  𝑆  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 } ) | 
						
							| 72 | 1 | nnnn0d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 73 | 7 | hashbcval | ⊢ ( ( 𝑆  ∈  Fin  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑆 𝐶 𝑀 )  =  { 𝑥  ∈  𝒫  𝑆  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 } ) | 
						
							| 74 | 8 72 73 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆 𝐶 𝑀 )  =  { 𝑥  ∈  𝒫  𝑆  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 } ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  ( 𝑆 𝐶 𝑀 )  =  { 𝑥  ∈  𝒫  𝑆  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 } ) | 
						
							| 76 | 71 75 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  ( 𝑢  ∪  { 𝑋 } )  ∈  ( 𝑆 𝐶 𝑀 ) ) | 
						
							| 77 | 37 76 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) )  →  ( 𝐾 ‘ ( 𝑢  ∪  { 𝑋 } ) )  ∈  𝑅 ) | 
						
							| 78 | 77 12 | fmptd | ⊢ ( 𝜑  →  𝐻 : ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) ) ⟶ 𝑅 ) | 
						
							| 79 | 7 14 2 5 6 16 36 78 | rami | ⊢ ( 𝜑  →  ∃ 𝑑  ∈  𝑅 ∃ 𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) | 
						
							| 80 | 72 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 81 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  𝑅  ∈  Fin ) | 
						
							| 82 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  𝐹 : 𝑅 ⟶ ℕ ) | 
						
							| 83 |  | simprll | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  𝑑  ∈  𝑅 ) | 
						
							| 84 | 82 83 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  ( 𝐹 ‘ 𝑑 )  ∈  ℕ ) | 
						
							| 85 |  | nnm1nn0 | ⊢ ( ( 𝐹 ‘ 𝑑 )  ∈  ℕ  →  ( ( 𝐹 ‘ 𝑑 )  −  1 )  ∈  ℕ0 ) | 
						
							| 86 | 84 85 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  ( ( 𝐹 ‘ 𝑑 )  −  1 )  ∈  ℕ0 ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  𝑦  ∈  𝑅 )  →  ( ( 𝐹 ‘ 𝑑 )  −  1 )  ∈  ℕ0 ) | 
						
							| 88 | 82 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  𝑦  ∈  𝑅 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℕ ) | 
						
							| 89 | 88 | nnnn0d | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  𝑦  ∈  𝑅 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℕ0 ) | 
						
							| 90 | 87 89 | ifcld | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  𝑦  ∈  𝑅 )  →  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) )  ∈  ℕ0 ) | 
						
							| 91 |  | eqid | ⊢ ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 92 | 90 91 | fmptd | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) : 𝑅 ⟶ ℕ0 ) | 
						
							| 93 |  | equequ2 | ⊢ ( 𝑥  =  𝑑  →  ( 𝑦  =  𝑥  ↔  𝑦  =  𝑑 ) ) | 
						
							| 94 |  | fveq2 | ⊢ ( 𝑥  =  𝑑  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑑 ) ) | 
						
							| 95 | 94 | oveq1d | ⊢ ( 𝑥  =  𝑑  →  ( ( 𝐹 ‘ 𝑥 )  −  1 )  =  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ) | 
						
							| 96 | 93 95 | ifbieq1d | ⊢ ( 𝑥  =  𝑑  →  if ( 𝑦  =  𝑥 ,  ( ( 𝐹 ‘ 𝑥 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) )  =  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 97 | 96 | mpteq2dv | ⊢ ( 𝑥  =  𝑑  →  ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑥 ,  ( ( 𝐹 ‘ 𝑥 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 98 | 97 | oveq2d | ⊢ ( 𝑥  =  𝑑  →  ( 𝑀  Ramsey  ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑥 ,  ( ( 𝐹 ‘ 𝑥 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) )  =  ( 𝑀  Ramsey  ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 99 |  | ovex | ⊢ ( 𝑀  Ramsey  ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) )  ∈  V | 
						
							| 100 | 98 4 99 | fvmpt | ⊢ ( 𝑑  ∈  𝑅  →  ( 𝐺 ‘ 𝑑 )  =  ( 𝑀  Ramsey  ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 101 | 83 100 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  ( 𝐺 ‘ 𝑑 )  =  ( 𝑀  Ramsey  ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 102 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  𝐺 : 𝑅 ⟶ ℕ0 ) | 
						
							| 103 | 102 83 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  ( 𝐺 ‘ 𝑑 )  ∈  ℕ0 ) | 
						
							| 104 | 101 103 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  ( 𝑀  Ramsey  ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) )  ∈  ℕ0 ) | 
						
							| 105 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) ) | 
						
							| 106 |  | simprrl | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 ) ) | 
						
							| 107 | 101 106 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  ( 𝑀  Ramsey  ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) )  ≤  ( ♯ ‘ 𝑤 ) ) | 
						
							| 108 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  𝐾 : ( 𝑆 𝐶 𝑀 ) ⟶ 𝑅 ) | 
						
							| 109 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  𝑆  ∈  Fin ) | 
						
							| 110 | 105 | elpwid | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  𝑤  ⊆  ( 𝑆  ∖  { 𝑋 } ) ) | 
						
							| 111 | 110 | difss2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  𝑤  ⊆  𝑆 ) | 
						
							| 112 | 7 | hashbcss | ⊢ ( ( 𝑆  ∈  Fin  ∧  𝑤  ⊆  𝑆  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑤 𝐶 𝑀 )  ⊆  ( 𝑆 𝐶 𝑀 ) ) | 
						
							| 113 | 109 111 80 112 | syl3anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  ( 𝑤 𝐶 𝑀 )  ⊆  ( 𝑆 𝐶 𝑀 ) ) | 
						
							| 114 | 108 113 | fssresd | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) ) : ( 𝑤 𝐶 𝑀 ) ⟶ 𝑅 ) | 
						
							| 115 | 7 80 81 92 104 105 107 114 | rami | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑣  ∈  𝒫  𝑤 ( ( ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) | 
						
							| 116 |  | equequ1 | ⊢ ( 𝑦  =  𝑐  →  ( 𝑦  =  𝑑  ↔  𝑐  =  𝑑 ) ) | 
						
							| 117 |  | fveq2 | ⊢ ( 𝑦  =  𝑐  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑐 ) ) | 
						
							| 118 | 116 117 | ifbieq2d | ⊢ ( 𝑦  =  𝑐  →  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) )  =  if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 119 |  | ovex | ⊢ ( ( 𝐹 ‘ 𝑑 )  −  1 )  ∈  V | 
						
							| 120 |  | fvex | ⊢ ( 𝐹 ‘ 𝑐 )  ∈  V | 
						
							| 121 | 119 120 | ifex | ⊢ if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ∈  V | 
						
							| 122 | 118 91 121 | fvmpt | ⊢ ( 𝑐  ∈  𝑅  →  ( ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑐 )  =  if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 123 | 122 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 ) )  →  ( ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑐 )  =  if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 124 | 123 | breq1d | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 ) )  →  ( ( ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑣 )  ↔  if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 ) ) ) | 
						
							| 125 | 124 | anbi1d | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 ) )  →  ( ( ( ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) )  ↔  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) ) | 
						
							| 126 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  𝑀  ∈  ℕ ) | 
						
							| 127 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  𝑅  ∈  Fin ) | 
						
							| 128 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  𝐹 : 𝑅 ⟶ ℕ ) | 
						
							| 129 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  𝐺 : 𝑅 ⟶ ℕ0 ) | 
						
							| 130 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  ( ( 𝑀  −  1 )  Ramsey  𝐺 )  ∈  ℕ0 ) | 
						
							| 131 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  𝑆  ∈  Fin ) | 
						
							| 132 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  ( ♯ ‘ 𝑆 )  =  ( ( ( 𝑀  −  1 )  Ramsey  𝐺 )  +  1 ) ) | 
						
							| 133 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  𝐾 : ( 𝑆 𝐶 𝑀 ) ⟶ 𝑅 ) | 
						
							| 134 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  𝑋  ∈  𝑆 ) | 
						
							| 135 | 83 | adantr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  𝑑  ∈  𝑅 ) | 
						
							| 136 | 110 | adantr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  𝑤  ⊆  ( 𝑆  ∖  { 𝑋 } ) ) | 
						
							| 137 | 106 | adantr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 ) ) | 
						
							| 138 |  | simprrr | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) | 
						
							| 139 | 138 | adantr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) | 
						
							| 140 |  | simprll | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  𝑐  ∈  𝑅 ) | 
						
							| 141 |  | simprlr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  𝑣  ∈  𝒫  𝑤 ) | 
						
							| 142 | 141 | elpwid | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  𝑣  ⊆  𝑤 ) | 
						
							| 143 |  | simprrl | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 ) ) | 
						
							| 144 |  | simprrr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) | 
						
							| 145 |  | cnvresima | ⊢ ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } )  =  ( ( ◡ 𝐾  “  { 𝑐 } )  ∩  ( 𝑤 𝐶 𝑀 ) ) | 
						
							| 146 |  | inss1 | ⊢ ( ( ◡ 𝐾  “  { 𝑐 } )  ∩  ( 𝑤 𝐶 𝑀 ) )  ⊆  ( ◡ 𝐾  “  { 𝑐 } ) | 
						
							| 147 | 145 146 | eqsstri | ⊢ ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } )  ⊆  ( ◡ 𝐾  “  { 𝑐 } ) | 
						
							| 148 | 144 147 | sstrdi | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝑐 } ) ) | 
						
							| 149 | 126 127 128 4 129 130 7 131 132 133 134 12 135 136 137 139 140 142 143 148 | ramub1lem1 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 )  ∧  ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) ) ) )  →  ∃ 𝑧  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝑐 } ) ) ) | 
						
							| 150 | 149 | expr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 ) )  →  ( ( if ( 𝑐  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑐 ) )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) )  →  ∃ 𝑧  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝑐 } ) ) ) ) | 
						
							| 151 | 125 150 | sylbid | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑣  ∈  𝒫  𝑤 ) )  →  ( ( ( ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) )  →  ∃ 𝑧  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝑐 } ) ) ) ) | 
						
							| 152 | 151 | anassrs | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  𝑐  ∈  𝑅 )  ∧  𝑣  ∈  𝒫  𝑤 )  →  ( ( ( ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) )  →  ∃ 𝑧  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝑐 } ) ) ) ) | 
						
							| 153 | 152 | rexlimdva | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  ∧  𝑐  ∈  𝑅 )  →  ( ∃ 𝑣  ∈  𝒫  𝑤 ( ( ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) )  →  ∃ 𝑧  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝑐 } ) ) ) ) | 
						
							| 154 | 153 | reximdva | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  ( ∃ 𝑐  ∈  𝑅 ∃ 𝑣  ∈  𝒫  𝑤 ( ( ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑑 ,  ( ( 𝐹 ‘ 𝑑 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑣 )  ∧  ( 𝑣 𝐶 𝑀 )  ⊆  ( ◡ ( 𝐾  ↾  ( 𝑤 𝐶 𝑀 ) )  “  { 𝑐 } ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑧  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝑐 } ) ) ) ) | 
						
							| 155 | 115 154 | mpd | ⊢ ( ( 𝜑  ∧  ( ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) )  ∧  ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) ) ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑧  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝑐 } ) ) ) | 
						
							| 156 | 155 | expr | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  𝑅  ∧  𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) ) )  →  ( ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑧  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝑐 } ) ) ) ) | 
						
							| 157 | 156 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑑  ∈  𝑅 ∃ 𝑤  ∈  𝒫  ( 𝑆  ∖  { 𝑋 } ) ( ( 𝐺 ‘ 𝑑 )  ≤  ( ♯ ‘ 𝑤 )  ∧  ( 𝑤 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝑑 } ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑧  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝑐 } ) ) ) ) | 
						
							| 158 | 79 157 | mpd | ⊢ ( 𝜑  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑧  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝑐 } ) ) ) |