| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ramub1.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | ramub1.r | ⊢ ( 𝜑  →  𝑅  ∈  Fin ) | 
						
							| 3 |  | ramub1.f | ⊢ ( 𝜑  →  𝐹 : 𝑅 ⟶ ℕ ) | 
						
							| 4 |  | ramub1.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝑅  ↦  ( 𝑀  Ramsey  ( 𝑦  ∈  𝑅  ↦  if ( 𝑦  =  𝑥 ,  ( ( 𝐹 ‘ 𝑥 )  −  1 ) ,  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 5 |  | ramub1.1 | ⊢ ( 𝜑  →  𝐺 : 𝑅 ⟶ ℕ0 ) | 
						
							| 6 |  | ramub1.2 | ⊢ ( 𝜑  →  ( ( 𝑀  −  1 )  Ramsey  𝐺 )  ∈  ℕ0 ) | 
						
							| 7 |  | ramub1.3 | ⊢ 𝐶  =  ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) | 
						
							| 8 |  | ramub1.4 | ⊢ ( 𝜑  →  𝑆  ∈  Fin ) | 
						
							| 9 |  | ramub1.5 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑆 )  =  ( ( ( 𝑀  −  1 )  Ramsey  𝐺 )  +  1 ) ) | 
						
							| 10 |  | ramub1.6 | ⊢ ( 𝜑  →  𝐾 : ( 𝑆 𝐶 𝑀 ) ⟶ 𝑅 ) | 
						
							| 11 |  | ramub1.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑆 ) | 
						
							| 12 |  | ramub1.h | ⊢ 𝐻  =  ( 𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) )  ↦  ( 𝐾 ‘ ( 𝑢  ∪  { 𝑋 } ) ) ) | 
						
							| 13 |  | ramub1.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑅 ) | 
						
							| 14 |  | ramub1.w | ⊢ ( 𝜑  →  𝑊  ⊆  ( 𝑆  ∖  { 𝑋 } ) ) | 
						
							| 15 |  | ramub1.7 | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐷 )  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 16 |  | ramub1.8 | ⊢ ( 𝜑  →  ( 𝑊 𝐶 ( 𝑀  −  1 ) )  ⊆  ( ◡ 𝐻  “  { 𝐷 } ) ) | 
						
							| 17 |  | ramub1.e | ⊢ ( 𝜑  →  𝐸  ∈  𝑅 ) | 
						
							| 18 |  | ramub1.v | ⊢ ( 𝜑  →  𝑉  ⊆  𝑊 ) | 
						
							| 19 |  | ramub1.9 | ⊢ ( 𝜑  →  if ( 𝐸  =  𝐷 ,  ( ( 𝐹 ‘ 𝐷 )  −  1 ) ,  ( 𝐹 ‘ 𝐸 ) )  ≤  ( ♯ ‘ 𝑉 ) ) | 
						
							| 20 |  | ramub1.s | ⊢ ( 𝜑  →  ( 𝑉 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) ) | 
						
							| 21 | 18 14 | sstrd | ⊢ ( 𝜑  →  𝑉  ⊆  ( 𝑆  ∖  { 𝑋 } ) ) | 
						
							| 22 | 21 | difss2d | ⊢ ( 𝜑  →  𝑉  ⊆  𝑆 ) | 
						
							| 23 | 11 | snssd | ⊢ ( 𝜑  →  { 𝑋 }  ⊆  𝑆 ) | 
						
							| 24 | 22 23 | unssd | ⊢ ( 𝜑  →  ( 𝑉  ∪  { 𝑋 } )  ⊆  𝑆 ) | 
						
							| 25 | 8 24 | sselpwd | ⊢ ( 𝜑  →  ( 𝑉  ∪  { 𝑋 } )  ∈  𝒫  𝑆 ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝐸  =  𝐷 )  →  ( 𝑉  ∪  { 𝑋 } )  ∈  𝒫  𝑆 ) | 
						
							| 27 |  | iftrue | ⊢ ( 𝐸  =  𝐷  →  if ( 𝐸  =  𝐷 ,  ( ( 𝐹 ‘ 𝐷 )  −  1 ) ,  ( 𝐹 ‘ 𝐸 ) )  =  ( ( 𝐹 ‘ 𝐷 )  −  1 ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝜑  ∧  𝐸  =  𝐷 )  →  if ( 𝐸  =  𝐷 ,  ( ( 𝐹 ‘ 𝐷 )  −  1 ) ,  ( 𝐹 ‘ 𝐸 ) )  =  ( ( 𝐹 ‘ 𝐷 )  −  1 ) ) | 
						
							| 29 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝐸  =  𝐷 )  →  if ( 𝐸  =  𝐷 ,  ( ( 𝐹 ‘ 𝐷 )  −  1 ) ,  ( 𝐹 ‘ 𝐸 ) )  ≤  ( ♯ ‘ 𝑉 ) ) | 
						
							| 30 | 28 29 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝐸  =  𝐷 )  →  ( ( 𝐹 ‘ 𝐷 )  −  1 )  ≤  ( ♯ ‘ 𝑉 ) ) | 
						
							| 31 | 3 13 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐷 )  ∈  ℕ ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝐸  =  𝐷 )  →  ( 𝐹 ‘ 𝐷 )  ∈  ℕ ) | 
						
							| 33 | 32 | nnred | ⊢ ( ( 𝜑  ∧  𝐸  =  𝐷 )  →  ( 𝐹 ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 34 |  | 1red | ⊢ ( ( 𝜑  ∧  𝐸  =  𝐷 )  →  1  ∈  ℝ ) | 
						
							| 35 | 8 22 | ssfid | ⊢ ( 𝜑  →  𝑉  ∈  Fin ) | 
						
							| 36 |  | hashcl | ⊢ ( 𝑉  ∈  Fin  →  ( ♯ ‘ 𝑉 )  ∈  ℕ0 ) | 
						
							| 37 |  | nn0re | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( ♯ ‘ 𝑉 )  ∈  ℝ ) | 
						
							| 38 | 35 36 37 | 3syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑉 )  ∈  ℝ ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝐸  =  𝐷 )  →  ( ♯ ‘ 𝑉 )  ∈  ℝ ) | 
						
							| 40 | 33 34 39 | lesubaddd | ⊢ ( ( 𝜑  ∧  𝐸  =  𝐷 )  →  ( ( ( 𝐹 ‘ 𝐷 )  −  1 )  ≤  ( ♯ ‘ 𝑉 )  ↔  ( 𝐹 ‘ 𝐷 )  ≤  ( ( ♯ ‘ 𝑉 )  +  1 ) ) ) | 
						
							| 41 | 30 40 | mpbid | ⊢ ( ( 𝜑  ∧  𝐸  =  𝐷 )  →  ( 𝐹 ‘ 𝐷 )  ≤  ( ( ♯ ‘ 𝑉 )  +  1 ) ) | 
						
							| 42 |  | fveq2 | ⊢ ( 𝐸  =  𝐷  →  ( 𝐹 ‘ 𝐸 )  =  ( 𝐹 ‘ 𝐷 ) ) | 
						
							| 43 |  | snidg | ⊢ ( 𝑋  ∈  𝑆  →  𝑋  ∈  { 𝑋 } ) | 
						
							| 44 | 11 43 | syl | ⊢ ( 𝜑  →  𝑋  ∈  { 𝑋 } ) | 
						
							| 45 | 21 | sseld | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝑉  →  𝑋  ∈  ( 𝑆  ∖  { 𝑋 } ) ) ) | 
						
							| 46 |  | eldifn | ⊢ ( 𝑋  ∈  ( 𝑆  ∖  { 𝑋 } )  →  ¬  𝑋  ∈  { 𝑋 } ) | 
						
							| 47 | 45 46 | syl6 | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝑉  →  ¬  𝑋  ∈  { 𝑋 } ) ) | 
						
							| 48 | 44 47 | mt2d | ⊢ ( 𝜑  →  ¬  𝑋  ∈  𝑉 ) | 
						
							| 49 |  | hashunsng | ⊢ ( 𝑋  ∈  𝑆  →  ( ( 𝑉  ∈  Fin  ∧  ¬  𝑋  ∈  𝑉 )  →  ( ♯ ‘ ( 𝑉  ∪  { 𝑋 } ) )  =  ( ( ♯ ‘ 𝑉 )  +  1 ) ) ) | 
						
							| 50 | 11 49 | syl | ⊢ ( 𝜑  →  ( ( 𝑉  ∈  Fin  ∧  ¬  𝑋  ∈  𝑉 )  →  ( ♯ ‘ ( 𝑉  ∪  { 𝑋 } ) )  =  ( ( ♯ ‘ 𝑉 )  +  1 ) ) ) | 
						
							| 51 | 35 48 50 | mp2and | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑉  ∪  { 𝑋 } ) )  =  ( ( ♯ ‘ 𝑉 )  +  1 ) ) | 
						
							| 52 | 42 51 | breqan12rd | ⊢ ( ( 𝜑  ∧  𝐸  =  𝐷 )  →  ( ( 𝐹 ‘ 𝐸 )  ≤  ( ♯ ‘ ( 𝑉  ∪  { 𝑋 } ) )  ↔  ( 𝐹 ‘ 𝐷 )  ≤  ( ( ♯ ‘ 𝑉 )  +  1 ) ) ) | 
						
							| 53 | 41 52 | mpbird | ⊢ ( ( 𝜑  ∧  𝐸  =  𝐷 )  →  ( 𝐹 ‘ 𝐸 )  ≤  ( ♯ ‘ ( 𝑉  ∪  { 𝑋 } ) ) ) | 
						
							| 54 |  | snfi | ⊢ { 𝑋 }  ∈  Fin | 
						
							| 55 |  | unfi | ⊢ ( ( 𝑉  ∈  Fin  ∧  { 𝑋 }  ∈  Fin )  →  ( 𝑉  ∪  { 𝑋 } )  ∈  Fin ) | 
						
							| 56 | 35 54 55 | sylancl | ⊢ ( 𝜑  →  ( 𝑉  ∪  { 𝑋 } )  ∈  Fin ) | 
						
							| 57 | 1 | nnnn0d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 58 | 7 | hashbcval | ⊢ ( ( ( 𝑉  ∪  { 𝑋 } )  ∈  Fin  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑉  ∪  { 𝑋 } ) 𝐶 𝑀 )  =  { 𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 } ) | 
						
							| 59 | 56 57 58 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑉  ∪  { 𝑋 } ) 𝐶 𝑀 )  =  { 𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 } ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( 𝜑  ∧  𝐸  =  𝐷 )  →  ( ( 𝑉  ∪  { 𝑋 } ) 𝐶 𝑀 )  =  { 𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 } ) | 
						
							| 61 |  | simpl1l | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  𝑥  ∈  𝒫  𝑉 )  →  𝜑 ) | 
						
							| 62 | 7 | hashbcval | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑉 𝐶 𝑀 )  =  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 } ) | 
						
							| 63 | 35 57 62 | syl2anc | ⊢ ( 𝜑  →  ( 𝑉 𝐶 𝑀 )  =  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 } ) | 
						
							| 64 | 63 20 | eqsstrrd | ⊢ ( 𝜑  →  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 }  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) ) | 
						
							| 65 | 61 64 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  𝑥  ∈  𝒫  𝑉 )  →  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 }  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) ) | 
						
							| 66 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  𝑥  ∈  𝒫  𝑉 )  →  𝑥  ∈  𝒫  𝑉 ) | 
						
							| 67 |  | simpl3 | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  𝑥  ∈  𝒫  𝑉 )  →  ( ♯ ‘ 𝑥 )  =  𝑀 ) | 
						
							| 68 |  | rabid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 }  ↔  ( 𝑥  ∈  𝒫  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 ) ) | 
						
							| 69 | 66 67 68 | sylanbrc | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  𝑥  ∈  𝒫  𝑉 )  →  𝑥  ∈  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 } ) | 
						
							| 70 | 65 69 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  𝑥  ∈  𝒫  𝑉 )  →  𝑥  ∈  ( ◡ 𝐾  “  { 𝐸 } ) ) | 
						
							| 71 |  | simpl2 | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } ) ) | 
						
							| 72 | 71 | elpwid | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  𝑥  ⊆  ( 𝑉  ∪  { 𝑋 } ) ) | 
						
							| 73 |  | simpl1l | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  𝜑 ) | 
						
							| 74 | 73 24 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( 𝑉  ∪  { 𝑋 } )  ⊆  𝑆 ) | 
						
							| 75 | 72 74 | sstrd | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  𝑥  ⊆  𝑆 ) | 
						
							| 76 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 77 | 76 | elpw | ⊢ ( 𝑥  ∈  𝒫  𝑆  ↔  𝑥  ⊆  𝑆 ) | 
						
							| 78 | 75 77 | sylibr | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  𝑥  ∈  𝒫  𝑆 ) | 
						
							| 79 |  | simpl3 | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( ♯ ‘ 𝑥 )  =  𝑀 ) | 
						
							| 80 |  | rabid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  𝒫  𝑆  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 }  ↔  ( 𝑥  ∈  𝒫  𝑆  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 ) ) | 
						
							| 81 | 78 79 80 | sylanbrc | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  𝑥  ∈  { 𝑥  ∈  𝒫  𝑆  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 } ) | 
						
							| 82 | 7 | hashbcval | ⊢ ( ( 𝑆  ∈  Fin  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑆 𝐶 𝑀 )  =  { 𝑥  ∈  𝒫  𝑆  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 } ) | 
						
							| 83 | 8 57 82 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆 𝐶 𝑀 )  =  { 𝑥  ∈  𝒫  𝑆  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 } ) | 
						
							| 84 | 73 83 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( 𝑆 𝐶 𝑀 )  =  { 𝑥  ∈  𝒫  𝑆  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 } ) | 
						
							| 85 | 81 84 | eleqtrrd | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  𝑥  ∈  ( 𝑆 𝐶 𝑀 ) ) | 
						
							| 86 | 14 | difss2d | ⊢ ( 𝜑  →  𝑊  ⊆  𝑆 ) | 
						
							| 87 | 8 86 | ssfid | ⊢ ( 𝜑  →  𝑊  ∈  Fin ) | 
						
							| 88 |  | nnm1nn0 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  −  1 )  ∈  ℕ0 ) | 
						
							| 89 | 1 88 | syl | ⊢ ( 𝜑  →  ( 𝑀  −  1 )  ∈  ℕ0 ) | 
						
							| 90 | 7 | hashbcval | ⊢ ( ( 𝑊  ∈  Fin  ∧  ( 𝑀  −  1 )  ∈  ℕ0 )  →  ( 𝑊 𝐶 ( 𝑀  −  1 ) )  =  { 𝑢  ∈  𝒫  𝑊  ∣  ( ♯ ‘ 𝑢 )  =  ( 𝑀  −  1 ) } ) | 
						
							| 91 | 87 89 90 | syl2anc | ⊢ ( 𝜑  →  ( 𝑊 𝐶 ( 𝑀  −  1 ) )  =  { 𝑢  ∈  𝒫  𝑊  ∣  ( ♯ ‘ 𝑢 )  =  ( 𝑀  −  1 ) } ) | 
						
							| 92 | 91 16 | eqsstrrd | ⊢ ( 𝜑  →  { 𝑢  ∈  𝒫  𝑊  ∣  ( ♯ ‘ 𝑢 )  =  ( 𝑀  −  1 ) }  ⊆  ( ◡ 𝐻  “  { 𝐷 } ) ) | 
						
							| 93 | 73 92 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  { 𝑢  ∈  𝒫  𝑊  ∣  ( ♯ ‘ 𝑢 )  =  ( 𝑀  −  1 ) }  ⊆  ( ◡ 𝐻  “  { 𝐷 } ) ) | 
						
							| 94 |  | fveqeq2 | ⊢ ( 𝑢  =  ( 𝑥  ∖  { 𝑋 } )  →  ( ( ♯ ‘ 𝑢 )  =  ( 𝑀  −  1 )  ↔  ( ♯ ‘ ( 𝑥  ∖  { 𝑋 } ) )  =  ( 𝑀  −  1 ) ) ) | 
						
							| 95 |  | uncom | ⊢ ( 𝑉  ∪  { 𝑋 } )  =  ( { 𝑋 }  ∪  𝑉 ) | 
						
							| 96 | 72 95 | sseqtrdi | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  𝑥  ⊆  ( { 𝑋 }  ∪  𝑉 ) ) | 
						
							| 97 |  | ssundif | ⊢ ( 𝑥  ⊆  ( { 𝑋 }  ∪  𝑉 )  ↔  ( 𝑥  ∖  { 𝑋 } )  ⊆  𝑉 ) | 
						
							| 98 | 96 97 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( 𝑥  ∖  { 𝑋 } )  ⊆  𝑉 ) | 
						
							| 99 | 73 18 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  𝑉  ⊆  𝑊 ) | 
						
							| 100 | 98 99 | sstrd | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( 𝑥  ∖  { 𝑋 } )  ⊆  𝑊 ) | 
						
							| 101 | 76 | difexi | ⊢ ( 𝑥  ∖  { 𝑋 } )  ∈  V | 
						
							| 102 | 101 | elpw | ⊢ ( ( 𝑥  ∖  { 𝑋 } )  ∈  𝒫  𝑊  ↔  ( 𝑥  ∖  { 𝑋 } )  ⊆  𝑊 ) | 
						
							| 103 | 100 102 | sylibr | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( 𝑥  ∖  { 𝑋 } )  ∈  𝒫  𝑊 ) | 
						
							| 104 | 73 8 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  𝑆  ∈  Fin ) | 
						
							| 105 | 104 75 | ssfid | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  𝑥  ∈  Fin ) | 
						
							| 106 |  | diffi | ⊢ ( 𝑥  ∈  Fin  →  ( 𝑥  ∖  { 𝑋 } )  ∈  Fin ) | 
						
							| 107 | 105 106 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( 𝑥  ∖  { 𝑋 } )  ∈  Fin ) | 
						
							| 108 |  | hashcl | ⊢ ( ( 𝑥  ∖  { 𝑋 } )  ∈  Fin  →  ( ♯ ‘ ( 𝑥  ∖  { 𝑋 } ) )  ∈  ℕ0 ) | 
						
							| 109 |  | nn0cn | ⊢ ( ( ♯ ‘ ( 𝑥  ∖  { 𝑋 } ) )  ∈  ℕ0  →  ( ♯ ‘ ( 𝑥  ∖  { 𝑋 } ) )  ∈  ℂ ) | 
						
							| 110 | 107 108 109 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( ♯ ‘ ( 𝑥  ∖  { 𝑋 } ) )  ∈  ℂ ) | 
						
							| 111 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 112 |  | pncan | ⊢ ( ( ( ♯ ‘ ( 𝑥  ∖  { 𝑋 } ) )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ( ♯ ‘ ( 𝑥  ∖  { 𝑋 } ) )  +  1 )  −  1 )  =  ( ♯ ‘ ( 𝑥  ∖  { 𝑋 } ) ) ) | 
						
							| 113 | 110 111 112 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( ( ( ♯ ‘ ( 𝑥  ∖  { 𝑋 } ) )  +  1 )  −  1 )  =  ( ♯ ‘ ( 𝑥  ∖  { 𝑋 } ) ) ) | 
						
							| 114 |  | neldifsnd | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ¬  𝑋  ∈  ( 𝑥  ∖  { 𝑋 } ) ) | 
						
							| 115 |  | hashunsng | ⊢ ( 𝑋  ∈  𝑆  →  ( ( ( 𝑥  ∖  { 𝑋 } )  ∈  Fin  ∧  ¬  𝑋  ∈  ( 𝑥  ∖  { 𝑋 } ) )  →  ( ♯ ‘ ( ( 𝑥  ∖  { 𝑋 } )  ∪  { 𝑋 } ) )  =  ( ( ♯ ‘ ( 𝑥  ∖  { 𝑋 } ) )  +  1 ) ) ) | 
						
							| 116 | 73 11 115 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( ( ( 𝑥  ∖  { 𝑋 } )  ∈  Fin  ∧  ¬  𝑋  ∈  ( 𝑥  ∖  { 𝑋 } ) )  →  ( ♯ ‘ ( ( 𝑥  ∖  { 𝑋 } )  ∪  { 𝑋 } ) )  =  ( ( ♯ ‘ ( 𝑥  ∖  { 𝑋 } ) )  +  1 ) ) ) | 
						
							| 117 | 107 114 116 | mp2and | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( ♯ ‘ ( ( 𝑥  ∖  { 𝑋 } )  ∪  { 𝑋 } ) )  =  ( ( ♯ ‘ ( 𝑥  ∖  { 𝑋 } ) )  +  1 ) ) | 
						
							| 118 |  | undif1 | ⊢ ( ( 𝑥  ∖  { 𝑋 } )  ∪  { 𝑋 } )  =  ( 𝑥  ∪  { 𝑋 } ) | 
						
							| 119 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ¬  𝑥  ∈  𝒫  𝑉 ) | 
						
							| 120 | 71 119 | eldifd | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  𝑥  ∈  ( 𝒫  ( 𝑉  ∪  { 𝑋 } )  ∖  𝒫  𝑉 ) ) | 
						
							| 121 |  | elpwunsn | ⊢ ( 𝑥  ∈  ( 𝒫  ( 𝑉  ∪  { 𝑋 } )  ∖  𝒫  𝑉 )  →  𝑋  ∈  𝑥 ) | 
						
							| 122 | 120 121 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  𝑋  ∈  𝑥 ) | 
						
							| 123 | 122 | snssd | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  { 𝑋 }  ⊆  𝑥 ) | 
						
							| 124 |  | ssequn2 | ⊢ ( { 𝑋 }  ⊆  𝑥  ↔  ( 𝑥  ∪  { 𝑋 } )  =  𝑥 ) | 
						
							| 125 | 123 124 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( 𝑥  ∪  { 𝑋 } )  =  𝑥 ) | 
						
							| 126 | 118 125 | eqtr2id | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  𝑥  =  ( ( 𝑥  ∖  { 𝑋 } )  ∪  { 𝑋 } ) ) | 
						
							| 127 | 126 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ ( ( 𝑥  ∖  { 𝑋 } )  ∪  { 𝑋 } ) ) ) | 
						
							| 128 | 127 79 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( ♯ ‘ ( ( 𝑥  ∖  { 𝑋 } )  ∪  { 𝑋 } ) )  =  𝑀 ) | 
						
							| 129 | 117 128 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( ( ♯ ‘ ( 𝑥  ∖  { 𝑋 } ) )  +  1 )  =  𝑀 ) | 
						
							| 130 | 129 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( ( ( ♯ ‘ ( 𝑥  ∖  { 𝑋 } ) )  +  1 )  −  1 )  =  ( 𝑀  −  1 ) ) | 
						
							| 131 | 113 130 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( ♯ ‘ ( 𝑥  ∖  { 𝑋 } ) )  =  ( 𝑀  −  1 ) ) | 
						
							| 132 | 94 103 131 | elrabd | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( 𝑥  ∖  { 𝑋 } )  ∈  { 𝑢  ∈  𝒫  𝑊  ∣  ( ♯ ‘ 𝑢 )  =  ( 𝑀  −  1 ) } ) | 
						
							| 133 | 93 132 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( 𝑥  ∖  { 𝑋 } )  ∈  ( ◡ 𝐻  “  { 𝐷 } ) ) | 
						
							| 134 | 12 | mptiniseg | ⊢ ( 𝐷  ∈  𝑅  →  ( ◡ 𝐻  “  { 𝐷 } )  =  { 𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) )  ∣  ( 𝐾 ‘ ( 𝑢  ∪  { 𝑋 } ) )  =  𝐷 } ) | 
						
							| 135 | 73 13 134 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( ◡ 𝐻  “  { 𝐷 } )  =  { 𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) )  ∣  ( 𝐾 ‘ ( 𝑢  ∪  { 𝑋 } ) )  =  𝐷 } ) | 
						
							| 136 | 133 135 | eleqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( 𝑥  ∖  { 𝑋 } )  ∈  { 𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) )  ∣  ( 𝐾 ‘ ( 𝑢  ∪  { 𝑋 } ) )  =  𝐷 } ) | 
						
							| 137 |  | uneq1 | ⊢ ( 𝑢  =  ( 𝑥  ∖  { 𝑋 } )  →  ( 𝑢  ∪  { 𝑋 } )  =  ( ( 𝑥  ∖  { 𝑋 } )  ∪  { 𝑋 } ) ) | 
						
							| 138 | 137 | fveqeq2d | ⊢ ( 𝑢  =  ( 𝑥  ∖  { 𝑋 } )  →  ( ( 𝐾 ‘ ( 𝑢  ∪  { 𝑋 } ) )  =  𝐷  ↔  ( 𝐾 ‘ ( ( 𝑥  ∖  { 𝑋 } )  ∪  { 𝑋 } ) )  =  𝐷 ) ) | 
						
							| 139 | 138 | elrab | ⊢ ( ( 𝑥  ∖  { 𝑋 } )  ∈  { 𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) )  ∣  ( 𝐾 ‘ ( 𝑢  ∪  { 𝑋 } ) )  =  𝐷 }  ↔  ( ( 𝑥  ∖  { 𝑋 } )  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) )  ∧  ( 𝐾 ‘ ( ( 𝑥  ∖  { 𝑋 } )  ∪  { 𝑋 } ) )  =  𝐷 ) ) | 
						
							| 140 | 139 | simprbi | ⊢ ( ( 𝑥  ∖  { 𝑋 } )  ∈  { 𝑢  ∈  ( ( 𝑆  ∖  { 𝑋 } ) 𝐶 ( 𝑀  −  1 ) )  ∣  ( 𝐾 ‘ ( 𝑢  ∪  { 𝑋 } ) )  =  𝐷 }  →  ( 𝐾 ‘ ( ( 𝑥  ∖  { 𝑋 } )  ∪  { 𝑋 } ) )  =  𝐷 ) | 
						
							| 141 | 136 140 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( 𝐾 ‘ ( ( 𝑥  ∖  { 𝑋 } )  ∪  { 𝑋 } ) )  =  𝐷 ) | 
						
							| 142 | 126 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( 𝐾 ‘ 𝑥 )  =  ( 𝐾 ‘ ( ( 𝑥  ∖  { 𝑋 } )  ∪  { 𝑋 } ) ) ) | 
						
							| 143 |  | simpl1r | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  𝐸  =  𝐷 ) | 
						
							| 144 | 141 142 143 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( 𝐾 ‘ 𝑥 )  =  𝐸 ) | 
						
							| 145 | 10 | ffnd | ⊢ ( 𝜑  →  𝐾  Fn  ( 𝑆 𝐶 𝑀 ) ) | 
						
							| 146 |  | fniniseg | ⊢ ( 𝐾  Fn  ( 𝑆 𝐶 𝑀 )  →  ( 𝑥  ∈  ( ◡ 𝐾  “  { 𝐸 } )  ↔  ( 𝑥  ∈  ( 𝑆 𝐶 𝑀 )  ∧  ( 𝐾 ‘ 𝑥 )  =  𝐸 ) ) ) | 
						
							| 147 | 73 145 146 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  ( 𝑥  ∈  ( ◡ 𝐾  “  { 𝐸 } )  ↔  ( 𝑥  ∈  ( 𝑆 𝐶 𝑀 )  ∧  ( 𝐾 ‘ 𝑥 )  =  𝐸 ) ) ) | 
						
							| 148 | 85 144 147 | mpbir2and | ⊢ ( ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  ∧  ¬  𝑥  ∈  𝒫  𝑉 )  →  𝑥  ∈  ( ◡ 𝐾  “  { 𝐸 } ) ) | 
						
							| 149 | 70 148 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝐸  =  𝐷 )  ∧  𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∧  ( ♯ ‘ 𝑥 )  =  𝑀 )  →  𝑥  ∈  ( ◡ 𝐾  “  { 𝐸 } ) ) | 
						
							| 150 | 149 | rabssdv | ⊢ ( ( 𝜑  ∧  𝐸  =  𝐷 )  →  { 𝑥  ∈  𝒫  ( 𝑉  ∪  { 𝑋 } )  ∣  ( ♯ ‘ 𝑥 )  =  𝑀 }  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) ) | 
						
							| 151 | 60 150 | eqsstrd | ⊢ ( ( 𝜑  ∧  𝐸  =  𝐷 )  →  ( ( 𝑉  ∪  { 𝑋 } ) 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) ) | 
						
							| 152 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑉  ∪  { 𝑋 } )  →  ( ♯ ‘ 𝑧 )  =  ( ♯ ‘ ( 𝑉  ∪  { 𝑋 } ) ) ) | 
						
							| 153 | 152 | breq2d | ⊢ ( 𝑧  =  ( 𝑉  ∪  { 𝑋 } )  →  ( ( 𝐹 ‘ 𝐸 )  ≤  ( ♯ ‘ 𝑧 )  ↔  ( 𝐹 ‘ 𝐸 )  ≤  ( ♯ ‘ ( 𝑉  ∪  { 𝑋 } ) ) ) ) | 
						
							| 154 |  | oveq1 | ⊢ ( 𝑧  =  ( 𝑉  ∪  { 𝑋 } )  →  ( 𝑧 𝐶 𝑀 )  =  ( ( 𝑉  ∪  { 𝑋 } ) 𝐶 𝑀 ) ) | 
						
							| 155 | 154 | sseq1d | ⊢ ( 𝑧  =  ( 𝑉  ∪  { 𝑋 } )  →  ( ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝐸 } )  ↔  ( ( 𝑉  ∪  { 𝑋 } ) 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) ) ) | 
						
							| 156 | 153 155 | anbi12d | ⊢ ( 𝑧  =  ( 𝑉  ∪  { 𝑋 } )  →  ( ( ( 𝐹 ‘ 𝐸 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) )  ↔  ( ( 𝐹 ‘ 𝐸 )  ≤  ( ♯ ‘ ( 𝑉  ∪  { 𝑋 } ) )  ∧  ( ( 𝑉  ∪  { 𝑋 } ) 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) ) ) ) | 
						
							| 157 | 156 | rspcev | ⊢ ( ( ( 𝑉  ∪  { 𝑋 } )  ∈  𝒫  𝑆  ∧  ( ( 𝐹 ‘ 𝐸 )  ≤  ( ♯ ‘ ( 𝑉  ∪  { 𝑋 } ) )  ∧  ( ( 𝑉  ∪  { 𝑋 } ) 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) ) )  →  ∃ 𝑧  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝐸 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) ) ) | 
						
							| 158 | 26 53 151 157 | syl12anc | ⊢ ( ( 𝜑  ∧  𝐸  =  𝐷 )  →  ∃ 𝑧  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝐸 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) ) ) | 
						
							| 159 | 8 22 | sselpwd | ⊢ ( 𝜑  →  𝑉  ∈  𝒫  𝑆 ) | 
						
							| 160 | 159 | adantr | ⊢ ( ( 𝜑  ∧  𝐸  ≠  𝐷 )  →  𝑉  ∈  𝒫  𝑆 ) | 
						
							| 161 |  | ifnefalse | ⊢ ( 𝐸  ≠  𝐷  →  if ( 𝐸  =  𝐷 ,  ( ( 𝐹 ‘ 𝐷 )  −  1 ) ,  ( 𝐹 ‘ 𝐸 ) )  =  ( 𝐹 ‘ 𝐸 ) ) | 
						
							| 162 | 161 | adantl | ⊢ ( ( 𝜑  ∧  𝐸  ≠  𝐷 )  →  if ( 𝐸  =  𝐷 ,  ( ( 𝐹 ‘ 𝐷 )  −  1 ) ,  ( 𝐹 ‘ 𝐸 ) )  =  ( 𝐹 ‘ 𝐸 ) ) | 
						
							| 163 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝐸  ≠  𝐷 )  →  if ( 𝐸  =  𝐷 ,  ( ( 𝐹 ‘ 𝐷 )  −  1 ) ,  ( 𝐹 ‘ 𝐸 ) )  ≤  ( ♯ ‘ 𝑉 ) ) | 
						
							| 164 | 162 163 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝐸  ≠  𝐷 )  →  ( 𝐹 ‘ 𝐸 )  ≤  ( ♯ ‘ 𝑉 ) ) | 
						
							| 165 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝐸  ≠  𝐷 )  →  ( 𝑉 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) ) | 
						
							| 166 |  | fveq2 | ⊢ ( 𝑧  =  𝑉  →  ( ♯ ‘ 𝑧 )  =  ( ♯ ‘ 𝑉 ) ) | 
						
							| 167 | 166 | breq2d | ⊢ ( 𝑧  =  𝑉  →  ( ( 𝐹 ‘ 𝐸 )  ≤  ( ♯ ‘ 𝑧 )  ↔  ( 𝐹 ‘ 𝐸 )  ≤  ( ♯ ‘ 𝑉 ) ) ) | 
						
							| 168 |  | oveq1 | ⊢ ( 𝑧  =  𝑉  →  ( 𝑧 𝐶 𝑀 )  =  ( 𝑉 𝐶 𝑀 ) ) | 
						
							| 169 | 168 | sseq1d | ⊢ ( 𝑧  =  𝑉  →  ( ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝐸 } )  ↔  ( 𝑉 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) ) ) | 
						
							| 170 | 167 169 | anbi12d | ⊢ ( 𝑧  =  𝑉  →  ( ( ( 𝐹 ‘ 𝐸 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) )  ↔  ( ( 𝐹 ‘ 𝐸 )  ≤  ( ♯ ‘ 𝑉 )  ∧  ( 𝑉 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) ) ) ) | 
						
							| 171 | 170 | rspcev | ⊢ ( ( 𝑉  ∈  𝒫  𝑆  ∧  ( ( 𝐹 ‘ 𝐸 )  ≤  ( ♯ ‘ 𝑉 )  ∧  ( 𝑉 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) ) )  →  ∃ 𝑧  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝐸 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) ) ) | 
						
							| 172 | 160 164 165 171 | syl12anc | ⊢ ( ( 𝜑  ∧  𝐸  ≠  𝐷 )  →  ∃ 𝑧  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝐸 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) ) ) | 
						
							| 173 | 158 172 | pm2.61dane | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝐸 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 𝐶 𝑀 )  ⊆  ( ◡ 𝐾  “  { 𝐸 } ) ) ) |