| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ramub1.m |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | ramub1.r |  |-  ( ph -> R e. Fin ) | 
						
							| 3 |  | ramub1.f |  |-  ( ph -> F : R --> NN ) | 
						
							| 4 |  | ramub1.g |  |-  G = ( x e. R |-> ( M Ramsey ( y e. R |-> if ( y = x , ( ( F ` x ) - 1 ) , ( F ` y ) ) ) ) ) | 
						
							| 5 |  | ramub1.1 |  |-  ( ph -> G : R --> NN0 ) | 
						
							| 6 |  | ramub1.2 |  |-  ( ph -> ( ( M - 1 ) Ramsey G ) e. NN0 ) | 
						
							| 7 |  | ramub1.3 |  |-  C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) | 
						
							| 8 |  | ramub1.4 |  |-  ( ph -> S e. Fin ) | 
						
							| 9 |  | ramub1.5 |  |-  ( ph -> ( # ` S ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) ) | 
						
							| 10 |  | ramub1.6 |  |-  ( ph -> K : ( S C M ) --> R ) | 
						
							| 11 |  | ramub1.x |  |-  ( ph -> X e. S ) | 
						
							| 12 |  | ramub1.h |  |-  H = ( u e. ( ( S \ { X } ) C ( M - 1 ) ) |-> ( K ` ( u u. { X } ) ) ) | 
						
							| 13 |  | ramub1.d |  |-  ( ph -> D e. R ) | 
						
							| 14 |  | ramub1.w |  |-  ( ph -> W C_ ( S \ { X } ) ) | 
						
							| 15 |  | ramub1.7 |  |-  ( ph -> ( G ` D ) <_ ( # ` W ) ) | 
						
							| 16 |  | ramub1.8 |  |-  ( ph -> ( W C ( M - 1 ) ) C_ ( `' H " { D } ) ) | 
						
							| 17 |  | ramub1.e |  |-  ( ph -> E e. R ) | 
						
							| 18 |  | ramub1.v |  |-  ( ph -> V C_ W ) | 
						
							| 19 |  | ramub1.9 |  |-  ( ph -> if ( E = D , ( ( F ` D ) - 1 ) , ( F ` E ) ) <_ ( # ` V ) ) | 
						
							| 20 |  | ramub1.s |  |-  ( ph -> ( V C M ) C_ ( `' K " { E } ) ) | 
						
							| 21 | 18 14 | sstrd |  |-  ( ph -> V C_ ( S \ { X } ) ) | 
						
							| 22 | 21 | difss2d |  |-  ( ph -> V C_ S ) | 
						
							| 23 | 11 | snssd |  |-  ( ph -> { X } C_ S ) | 
						
							| 24 | 22 23 | unssd |  |-  ( ph -> ( V u. { X } ) C_ S ) | 
						
							| 25 | 8 24 | sselpwd |  |-  ( ph -> ( V u. { X } ) e. ~P S ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ E = D ) -> ( V u. { X } ) e. ~P S ) | 
						
							| 27 |  | iftrue |  |-  ( E = D -> if ( E = D , ( ( F ` D ) - 1 ) , ( F ` E ) ) = ( ( F ` D ) - 1 ) ) | 
						
							| 28 | 27 | adantl |  |-  ( ( ph /\ E = D ) -> if ( E = D , ( ( F ` D ) - 1 ) , ( F ` E ) ) = ( ( F ` D ) - 1 ) ) | 
						
							| 29 | 19 | adantr |  |-  ( ( ph /\ E = D ) -> if ( E = D , ( ( F ` D ) - 1 ) , ( F ` E ) ) <_ ( # ` V ) ) | 
						
							| 30 | 28 29 | eqbrtrrd |  |-  ( ( ph /\ E = D ) -> ( ( F ` D ) - 1 ) <_ ( # ` V ) ) | 
						
							| 31 | 3 13 | ffvelcdmd |  |-  ( ph -> ( F ` D ) e. NN ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ E = D ) -> ( F ` D ) e. NN ) | 
						
							| 33 | 32 | nnred |  |-  ( ( ph /\ E = D ) -> ( F ` D ) e. RR ) | 
						
							| 34 |  | 1red |  |-  ( ( ph /\ E = D ) -> 1 e. RR ) | 
						
							| 35 | 8 22 | ssfid |  |-  ( ph -> V e. Fin ) | 
						
							| 36 |  | hashcl |  |-  ( V e. Fin -> ( # ` V ) e. NN0 ) | 
						
							| 37 |  | nn0re |  |-  ( ( # ` V ) e. NN0 -> ( # ` V ) e. RR ) | 
						
							| 38 | 35 36 37 | 3syl |  |-  ( ph -> ( # ` V ) e. RR ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ph /\ E = D ) -> ( # ` V ) e. RR ) | 
						
							| 40 | 33 34 39 | lesubaddd |  |-  ( ( ph /\ E = D ) -> ( ( ( F ` D ) - 1 ) <_ ( # ` V ) <-> ( F ` D ) <_ ( ( # ` V ) + 1 ) ) ) | 
						
							| 41 | 30 40 | mpbid |  |-  ( ( ph /\ E = D ) -> ( F ` D ) <_ ( ( # ` V ) + 1 ) ) | 
						
							| 42 |  | fveq2 |  |-  ( E = D -> ( F ` E ) = ( F ` D ) ) | 
						
							| 43 |  | snidg |  |-  ( X e. S -> X e. { X } ) | 
						
							| 44 | 11 43 | syl |  |-  ( ph -> X e. { X } ) | 
						
							| 45 | 21 | sseld |  |-  ( ph -> ( X e. V -> X e. ( S \ { X } ) ) ) | 
						
							| 46 |  | eldifn |  |-  ( X e. ( S \ { X } ) -> -. X e. { X } ) | 
						
							| 47 | 45 46 | syl6 |  |-  ( ph -> ( X e. V -> -. X e. { X } ) ) | 
						
							| 48 | 44 47 | mt2d |  |-  ( ph -> -. X e. V ) | 
						
							| 49 |  | hashunsng |  |-  ( X e. S -> ( ( V e. Fin /\ -. X e. V ) -> ( # ` ( V u. { X } ) ) = ( ( # ` V ) + 1 ) ) ) | 
						
							| 50 | 11 49 | syl |  |-  ( ph -> ( ( V e. Fin /\ -. X e. V ) -> ( # ` ( V u. { X } ) ) = ( ( # ` V ) + 1 ) ) ) | 
						
							| 51 | 35 48 50 | mp2and |  |-  ( ph -> ( # ` ( V u. { X } ) ) = ( ( # ` V ) + 1 ) ) | 
						
							| 52 | 42 51 | breqan12rd |  |-  ( ( ph /\ E = D ) -> ( ( F ` E ) <_ ( # ` ( V u. { X } ) ) <-> ( F ` D ) <_ ( ( # ` V ) + 1 ) ) ) | 
						
							| 53 | 41 52 | mpbird |  |-  ( ( ph /\ E = D ) -> ( F ` E ) <_ ( # ` ( V u. { X } ) ) ) | 
						
							| 54 |  | snfi |  |-  { X } e. Fin | 
						
							| 55 |  | unfi |  |-  ( ( V e. Fin /\ { X } e. Fin ) -> ( V u. { X } ) e. Fin ) | 
						
							| 56 | 35 54 55 | sylancl |  |-  ( ph -> ( V u. { X } ) e. Fin ) | 
						
							| 57 | 1 | nnnn0d |  |-  ( ph -> M e. NN0 ) | 
						
							| 58 | 7 | hashbcval |  |-  ( ( ( V u. { X } ) e. Fin /\ M e. NN0 ) -> ( ( V u. { X } ) C M ) = { x e. ~P ( V u. { X } ) | ( # ` x ) = M } ) | 
						
							| 59 | 56 57 58 | syl2anc |  |-  ( ph -> ( ( V u. { X } ) C M ) = { x e. ~P ( V u. { X } ) | ( # ` x ) = M } ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ph /\ E = D ) -> ( ( V u. { X } ) C M ) = { x e. ~P ( V u. { X } ) | ( # ` x ) = M } ) | 
						
							| 61 |  | simpl1l |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ x e. ~P V ) -> ph ) | 
						
							| 62 | 7 | hashbcval |  |-  ( ( V e. Fin /\ M e. NN0 ) -> ( V C M ) = { x e. ~P V | ( # ` x ) = M } ) | 
						
							| 63 | 35 57 62 | syl2anc |  |-  ( ph -> ( V C M ) = { x e. ~P V | ( # ` x ) = M } ) | 
						
							| 64 | 63 20 | eqsstrrd |  |-  ( ph -> { x e. ~P V | ( # ` x ) = M } C_ ( `' K " { E } ) ) | 
						
							| 65 | 61 64 | syl |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ x e. ~P V ) -> { x e. ~P V | ( # ` x ) = M } C_ ( `' K " { E } ) ) | 
						
							| 66 |  | simpr |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ x e. ~P V ) -> x e. ~P V ) | 
						
							| 67 |  | simpl3 |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ x e. ~P V ) -> ( # ` x ) = M ) | 
						
							| 68 |  | rabid |  |-  ( x e. { x e. ~P V | ( # ` x ) = M } <-> ( x e. ~P V /\ ( # ` x ) = M ) ) | 
						
							| 69 | 66 67 68 | sylanbrc |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ x e. ~P V ) -> x e. { x e. ~P V | ( # ` x ) = M } ) | 
						
							| 70 | 65 69 | sseldd |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ x e. ~P V ) -> x e. ( `' K " { E } ) ) | 
						
							| 71 |  | simpl2 |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x e. ~P ( V u. { X } ) ) | 
						
							| 72 | 71 | elpwid |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x C_ ( V u. { X } ) ) | 
						
							| 73 |  | simpl1l |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ph ) | 
						
							| 74 | 73 24 | syl |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( V u. { X } ) C_ S ) | 
						
							| 75 | 72 74 | sstrd |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x C_ S ) | 
						
							| 76 |  | vex |  |-  x e. _V | 
						
							| 77 | 76 | elpw |  |-  ( x e. ~P S <-> x C_ S ) | 
						
							| 78 | 75 77 | sylibr |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x e. ~P S ) | 
						
							| 79 |  | simpl3 |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( # ` x ) = M ) | 
						
							| 80 |  | rabid |  |-  ( x e. { x e. ~P S | ( # ` x ) = M } <-> ( x e. ~P S /\ ( # ` x ) = M ) ) | 
						
							| 81 | 78 79 80 | sylanbrc |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x e. { x e. ~P S | ( # ` x ) = M } ) | 
						
							| 82 | 7 | hashbcval |  |-  ( ( S e. Fin /\ M e. NN0 ) -> ( S C M ) = { x e. ~P S | ( # ` x ) = M } ) | 
						
							| 83 | 8 57 82 | syl2anc |  |-  ( ph -> ( S C M ) = { x e. ~P S | ( # ` x ) = M } ) | 
						
							| 84 | 73 83 | syl |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( S C M ) = { x e. ~P S | ( # ` x ) = M } ) | 
						
							| 85 | 81 84 | eleqtrrd |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x e. ( S C M ) ) | 
						
							| 86 | 14 | difss2d |  |-  ( ph -> W C_ S ) | 
						
							| 87 | 8 86 | ssfid |  |-  ( ph -> W e. Fin ) | 
						
							| 88 |  | nnm1nn0 |  |-  ( M e. NN -> ( M - 1 ) e. NN0 ) | 
						
							| 89 | 1 88 | syl |  |-  ( ph -> ( M - 1 ) e. NN0 ) | 
						
							| 90 | 7 | hashbcval |  |-  ( ( W e. Fin /\ ( M - 1 ) e. NN0 ) -> ( W C ( M - 1 ) ) = { u e. ~P W | ( # ` u ) = ( M - 1 ) } ) | 
						
							| 91 | 87 89 90 | syl2anc |  |-  ( ph -> ( W C ( M - 1 ) ) = { u e. ~P W | ( # ` u ) = ( M - 1 ) } ) | 
						
							| 92 | 91 16 | eqsstrrd |  |-  ( ph -> { u e. ~P W | ( # ` u ) = ( M - 1 ) } C_ ( `' H " { D } ) ) | 
						
							| 93 | 73 92 | syl |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> { u e. ~P W | ( # ` u ) = ( M - 1 ) } C_ ( `' H " { D } ) ) | 
						
							| 94 |  | fveqeq2 |  |-  ( u = ( x \ { X } ) -> ( ( # ` u ) = ( M - 1 ) <-> ( # ` ( x \ { X } ) ) = ( M - 1 ) ) ) | 
						
							| 95 |  | uncom |  |-  ( V u. { X } ) = ( { X } u. V ) | 
						
							| 96 | 72 95 | sseqtrdi |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x C_ ( { X } u. V ) ) | 
						
							| 97 |  | ssundif |  |-  ( x C_ ( { X } u. V ) <-> ( x \ { X } ) C_ V ) | 
						
							| 98 | 96 97 | sylib |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( x \ { X } ) C_ V ) | 
						
							| 99 | 73 18 | syl |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> V C_ W ) | 
						
							| 100 | 98 99 | sstrd |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( x \ { X } ) C_ W ) | 
						
							| 101 | 76 | difexi |  |-  ( x \ { X } ) e. _V | 
						
							| 102 | 101 | elpw |  |-  ( ( x \ { X } ) e. ~P W <-> ( x \ { X } ) C_ W ) | 
						
							| 103 | 100 102 | sylibr |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( x \ { X } ) e. ~P W ) | 
						
							| 104 | 73 8 | syl |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> S e. Fin ) | 
						
							| 105 | 104 75 | ssfid |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x e. Fin ) | 
						
							| 106 |  | diffi |  |-  ( x e. Fin -> ( x \ { X } ) e. Fin ) | 
						
							| 107 | 105 106 | syl |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( x \ { X } ) e. Fin ) | 
						
							| 108 |  | hashcl |  |-  ( ( x \ { X } ) e. Fin -> ( # ` ( x \ { X } ) ) e. NN0 ) | 
						
							| 109 |  | nn0cn |  |-  ( ( # ` ( x \ { X } ) ) e. NN0 -> ( # ` ( x \ { X } ) ) e. CC ) | 
						
							| 110 | 107 108 109 | 3syl |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( # ` ( x \ { X } ) ) e. CC ) | 
						
							| 111 |  | ax-1cn |  |-  1 e. CC | 
						
							| 112 |  | pncan |  |-  ( ( ( # ` ( x \ { X } ) ) e. CC /\ 1 e. CC ) -> ( ( ( # ` ( x \ { X } ) ) + 1 ) - 1 ) = ( # ` ( x \ { X } ) ) ) | 
						
							| 113 | 110 111 112 | sylancl |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( ( ( # ` ( x \ { X } ) ) + 1 ) - 1 ) = ( # ` ( x \ { X } ) ) ) | 
						
							| 114 |  | neldifsnd |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> -. X e. ( x \ { X } ) ) | 
						
							| 115 |  | hashunsng |  |-  ( X e. S -> ( ( ( x \ { X } ) e. Fin /\ -. X e. ( x \ { X } ) ) -> ( # ` ( ( x \ { X } ) u. { X } ) ) = ( ( # ` ( x \ { X } ) ) + 1 ) ) ) | 
						
							| 116 | 73 11 115 | 3syl |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( ( ( x \ { X } ) e. Fin /\ -. X e. ( x \ { X } ) ) -> ( # ` ( ( x \ { X } ) u. { X } ) ) = ( ( # ` ( x \ { X } ) ) + 1 ) ) ) | 
						
							| 117 | 107 114 116 | mp2and |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( # ` ( ( x \ { X } ) u. { X } ) ) = ( ( # ` ( x \ { X } ) ) + 1 ) ) | 
						
							| 118 |  | undif1 |  |-  ( ( x \ { X } ) u. { X } ) = ( x u. { X } ) | 
						
							| 119 |  | simpr |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> -. x e. ~P V ) | 
						
							| 120 | 71 119 | eldifd |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x e. ( ~P ( V u. { X } ) \ ~P V ) ) | 
						
							| 121 |  | elpwunsn |  |-  ( x e. ( ~P ( V u. { X } ) \ ~P V ) -> X e. x ) | 
						
							| 122 | 120 121 | syl |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> X e. x ) | 
						
							| 123 | 122 | snssd |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> { X } C_ x ) | 
						
							| 124 |  | ssequn2 |  |-  ( { X } C_ x <-> ( x u. { X } ) = x ) | 
						
							| 125 | 123 124 | sylib |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( x u. { X } ) = x ) | 
						
							| 126 | 118 125 | eqtr2id |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x = ( ( x \ { X } ) u. { X } ) ) | 
						
							| 127 | 126 | fveq2d |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( # ` x ) = ( # ` ( ( x \ { X } ) u. { X } ) ) ) | 
						
							| 128 | 127 79 | eqtr3d |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( # ` ( ( x \ { X } ) u. { X } ) ) = M ) | 
						
							| 129 | 117 128 | eqtr3d |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( ( # ` ( x \ { X } ) ) + 1 ) = M ) | 
						
							| 130 | 129 | oveq1d |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( ( ( # ` ( x \ { X } ) ) + 1 ) - 1 ) = ( M - 1 ) ) | 
						
							| 131 | 113 130 | eqtr3d |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( # ` ( x \ { X } ) ) = ( M - 1 ) ) | 
						
							| 132 | 94 103 131 | elrabd |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( x \ { X } ) e. { u e. ~P W | ( # ` u ) = ( M - 1 ) } ) | 
						
							| 133 | 93 132 | sseldd |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( x \ { X } ) e. ( `' H " { D } ) ) | 
						
							| 134 | 12 | mptiniseg |  |-  ( D e. R -> ( `' H " { D } ) = { u e. ( ( S \ { X } ) C ( M - 1 ) ) | ( K ` ( u u. { X } ) ) = D } ) | 
						
							| 135 | 73 13 134 | 3syl |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( `' H " { D } ) = { u e. ( ( S \ { X } ) C ( M - 1 ) ) | ( K ` ( u u. { X } ) ) = D } ) | 
						
							| 136 | 133 135 | eleqtrd |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( x \ { X } ) e. { u e. ( ( S \ { X } ) C ( M - 1 ) ) | ( K ` ( u u. { X } ) ) = D } ) | 
						
							| 137 |  | uneq1 |  |-  ( u = ( x \ { X } ) -> ( u u. { X } ) = ( ( x \ { X } ) u. { X } ) ) | 
						
							| 138 | 137 | fveqeq2d |  |-  ( u = ( x \ { X } ) -> ( ( K ` ( u u. { X } ) ) = D <-> ( K ` ( ( x \ { X } ) u. { X } ) ) = D ) ) | 
						
							| 139 | 138 | elrab |  |-  ( ( x \ { X } ) e. { u e. ( ( S \ { X } ) C ( M - 1 ) ) | ( K ` ( u u. { X } ) ) = D } <-> ( ( x \ { X } ) e. ( ( S \ { X } ) C ( M - 1 ) ) /\ ( K ` ( ( x \ { X } ) u. { X } ) ) = D ) ) | 
						
							| 140 | 139 | simprbi |  |-  ( ( x \ { X } ) e. { u e. ( ( S \ { X } ) C ( M - 1 ) ) | ( K ` ( u u. { X } ) ) = D } -> ( K ` ( ( x \ { X } ) u. { X } ) ) = D ) | 
						
							| 141 | 136 140 | syl |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( K ` ( ( x \ { X } ) u. { X } ) ) = D ) | 
						
							| 142 | 126 | fveq2d |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( K ` x ) = ( K ` ( ( x \ { X } ) u. { X } ) ) ) | 
						
							| 143 |  | simpl1r |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> E = D ) | 
						
							| 144 | 141 142 143 | 3eqtr4d |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( K ` x ) = E ) | 
						
							| 145 | 10 | ffnd |  |-  ( ph -> K Fn ( S C M ) ) | 
						
							| 146 |  | fniniseg |  |-  ( K Fn ( S C M ) -> ( x e. ( `' K " { E } ) <-> ( x e. ( S C M ) /\ ( K ` x ) = E ) ) ) | 
						
							| 147 | 73 145 146 | 3syl |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( x e. ( `' K " { E } ) <-> ( x e. ( S C M ) /\ ( K ` x ) = E ) ) ) | 
						
							| 148 | 85 144 147 | mpbir2and |  |-  ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x e. ( `' K " { E } ) ) | 
						
							| 149 | 70 148 | pm2.61dan |  |-  ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) -> x e. ( `' K " { E } ) ) | 
						
							| 150 | 149 | rabssdv |  |-  ( ( ph /\ E = D ) -> { x e. ~P ( V u. { X } ) | ( # ` x ) = M } C_ ( `' K " { E } ) ) | 
						
							| 151 | 60 150 | eqsstrd |  |-  ( ( ph /\ E = D ) -> ( ( V u. { X } ) C M ) C_ ( `' K " { E } ) ) | 
						
							| 152 |  | fveq2 |  |-  ( z = ( V u. { X } ) -> ( # ` z ) = ( # ` ( V u. { X } ) ) ) | 
						
							| 153 | 152 | breq2d |  |-  ( z = ( V u. { X } ) -> ( ( F ` E ) <_ ( # ` z ) <-> ( F ` E ) <_ ( # ` ( V u. { X } ) ) ) ) | 
						
							| 154 |  | oveq1 |  |-  ( z = ( V u. { X } ) -> ( z C M ) = ( ( V u. { X } ) C M ) ) | 
						
							| 155 | 154 | sseq1d |  |-  ( z = ( V u. { X } ) -> ( ( z C M ) C_ ( `' K " { E } ) <-> ( ( V u. { X } ) C M ) C_ ( `' K " { E } ) ) ) | 
						
							| 156 | 153 155 | anbi12d |  |-  ( z = ( V u. { X } ) -> ( ( ( F ` E ) <_ ( # ` z ) /\ ( z C M ) C_ ( `' K " { E } ) ) <-> ( ( F ` E ) <_ ( # ` ( V u. { X } ) ) /\ ( ( V u. { X } ) C M ) C_ ( `' K " { E } ) ) ) ) | 
						
							| 157 | 156 | rspcev |  |-  ( ( ( V u. { X } ) e. ~P S /\ ( ( F ` E ) <_ ( # ` ( V u. { X } ) ) /\ ( ( V u. { X } ) C M ) C_ ( `' K " { E } ) ) ) -> E. z e. ~P S ( ( F ` E ) <_ ( # ` z ) /\ ( z C M ) C_ ( `' K " { E } ) ) ) | 
						
							| 158 | 26 53 151 157 | syl12anc |  |-  ( ( ph /\ E = D ) -> E. z e. ~P S ( ( F ` E ) <_ ( # ` z ) /\ ( z C M ) C_ ( `' K " { E } ) ) ) | 
						
							| 159 | 8 22 | sselpwd |  |-  ( ph -> V e. ~P S ) | 
						
							| 160 | 159 | adantr |  |-  ( ( ph /\ E =/= D ) -> V e. ~P S ) | 
						
							| 161 |  | ifnefalse |  |-  ( E =/= D -> if ( E = D , ( ( F ` D ) - 1 ) , ( F ` E ) ) = ( F ` E ) ) | 
						
							| 162 | 161 | adantl |  |-  ( ( ph /\ E =/= D ) -> if ( E = D , ( ( F ` D ) - 1 ) , ( F ` E ) ) = ( F ` E ) ) | 
						
							| 163 | 19 | adantr |  |-  ( ( ph /\ E =/= D ) -> if ( E = D , ( ( F ` D ) - 1 ) , ( F ` E ) ) <_ ( # ` V ) ) | 
						
							| 164 | 162 163 | eqbrtrrd |  |-  ( ( ph /\ E =/= D ) -> ( F ` E ) <_ ( # ` V ) ) | 
						
							| 165 | 20 | adantr |  |-  ( ( ph /\ E =/= D ) -> ( V C M ) C_ ( `' K " { E } ) ) | 
						
							| 166 |  | fveq2 |  |-  ( z = V -> ( # ` z ) = ( # ` V ) ) | 
						
							| 167 | 166 | breq2d |  |-  ( z = V -> ( ( F ` E ) <_ ( # ` z ) <-> ( F ` E ) <_ ( # ` V ) ) ) | 
						
							| 168 |  | oveq1 |  |-  ( z = V -> ( z C M ) = ( V C M ) ) | 
						
							| 169 | 168 | sseq1d |  |-  ( z = V -> ( ( z C M ) C_ ( `' K " { E } ) <-> ( V C M ) C_ ( `' K " { E } ) ) ) | 
						
							| 170 | 167 169 | anbi12d |  |-  ( z = V -> ( ( ( F ` E ) <_ ( # ` z ) /\ ( z C M ) C_ ( `' K " { E } ) ) <-> ( ( F ` E ) <_ ( # ` V ) /\ ( V C M ) C_ ( `' K " { E } ) ) ) ) | 
						
							| 171 | 170 | rspcev |  |-  ( ( V e. ~P S /\ ( ( F ` E ) <_ ( # ` V ) /\ ( V C M ) C_ ( `' K " { E } ) ) ) -> E. z e. ~P S ( ( F ` E ) <_ ( # ` z ) /\ ( z C M ) C_ ( `' K " { E } ) ) ) | 
						
							| 172 | 160 164 165 171 | syl12anc |  |-  ( ( ph /\ E =/= D ) -> E. z e. ~P S ( ( F ` E ) <_ ( # ` z ) /\ ( z C M ) C_ ( `' K " { E } ) ) ) | 
						
							| 173 | 158 172 | pm2.61dane |  |-  ( ph -> E. z e. ~P S ( ( F ` E ) <_ ( # ` z ) /\ ( z C M ) C_ ( `' K " { E } ) ) ) |