| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lanpropd.1 |
|- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
| 2 |
|
lanpropd.2 |
|- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
| 3 |
|
lanpropd.3 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 4 |
|
lanpropd.4 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
| 5 |
|
lanpropd.5 |
|- ( ph -> ( Homf ` E ) = ( Homf ` F ) ) |
| 6 |
|
lanpropd.6 |
|- ( ph -> ( comf ` E ) = ( comf ` F ) ) |
| 7 |
|
lanpropd.a |
|- ( ph -> A e. V ) |
| 8 |
|
lanpropd.b |
|- ( ph -> B e. V ) |
| 9 |
|
lanpropd.c |
|- ( ph -> C e. V ) |
| 10 |
|
lanpropd.d |
|- ( ph -> D e. V ) |
| 11 |
|
lanpropd.e |
|- ( ph -> E e. V ) |
| 12 |
|
lanpropd.f |
|- ( ph -> F e. V ) |
| 13 |
1 2 3 4 7 8 9 10
|
funcpropd |
|- ( ph -> ( A Func C ) = ( B Func D ) ) |
| 14 |
1 2 5 6 7 8 11 12
|
funcpropd |
|- ( ph -> ( A Func E ) = ( B Func F ) ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ f e. ( A Func C ) ) -> ( A Func E ) = ( B Func F ) ) |
| 16 |
3
|
adantr |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 17 |
4
|
adantr |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 18 |
5
|
adantr |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( Homf ` E ) = ( Homf ` F ) ) |
| 19 |
6
|
adantr |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( comf ` E ) = ( comf ` F ) ) |
| 20 |
|
funcrcl |
|- ( f e. ( A Func C ) -> ( A e. Cat /\ C e. Cat ) ) |
| 21 |
20
|
ad2antrl |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( A e. Cat /\ C e. Cat ) ) |
| 22 |
21
|
simprd |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> C e. Cat ) |
| 23 |
10
|
adantr |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> D e. V ) |
| 24 |
16 17 22 23
|
catpropd |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( C e. Cat <-> D e. Cat ) ) |
| 25 |
22 24
|
mpbid |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> D e. Cat ) |
| 26 |
|
funcrcl |
|- ( x e. ( A Func E ) -> ( A e. Cat /\ E e. Cat ) ) |
| 27 |
26
|
ad2antll |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( A e. Cat /\ E e. Cat ) ) |
| 28 |
27
|
simprd |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> E e. Cat ) |
| 29 |
12
|
adantr |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> F e. V ) |
| 30 |
18 19 28 29
|
catpropd |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( E e. Cat <-> F e. Cat ) ) |
| 31 |
28 30
|
mpbid |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> F e. Cat ) |
| 32 |
16 17 18 19 22 25 28 31
|
fucpropd |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( C FuncCat E ) = ( D FuncCat F ) ) |
| 33 |
32
|
fveq2d |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( oppCat ` ( C FuncCat E ) ) = ( oppCat ` ( D FuncCat F ) ) ) |
| 34 |
1
|
adantr |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( Homf ` A ) = ( Homf ` B ) ) |
| 35 |
2
|
adantr |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( comf ` A ) = ( comf ` B ) ) |
| 36 |
21
|
simpld |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> A e. Cat ) |
| 37 |
8
|
adantr |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> B e. V ) |
| 38 |
34 35 36 37
|
catpropd |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( A e. Cat <-> B e. Cat ) ) |
| 39 |
36 38
|
mpbid |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> B e. Cat ) |
| 40 |
34 35 18 19 36 39 28 31
|
fucpropd |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( A FuncCat E ) = ( B FuncCat F ) ) |
| 41 |
40
|
fveq2d |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( oppCat ` ( A FuncCat E ) ) = ( oppCat ` ( B FuncCat F ) ) ) |
| 42 |
33 41
|
oveq12d |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( ( oppCat ` ( C FuncCat E ) ) UP ( oppCat ` ( A FuncCat E ) ) ) = ( ( oppCat ` ( D FuncCat F ) ) UP ( oppCat ` ( B FuncCat F ) ) ) ) |
| 43 |
|
simprl |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> f e. ( A Func C ) ) |
| 44 |
16 17 18 19 22 25 28 31 43
|
prcofpropd |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( <. C , E >. -o.F f ) = ( <. D , F >. -o.F f ) ) |
| 45 |
44
|
fveq2d |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( oppFunc ` ( <. C , E >. -o.F f ) ) = ( oppFunc ` ( <. D , F >. -o.F f ) ) ) |
| 46 |
|
eqidd |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> x = x ) |
| 47 |
42 45 46
|
oveq123d |
|- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( ( oppFunc ` ( <. C , E >. -o.F f ) ) ( ( oppCat ` ( C FuncCat E ) ) UP ( oppCat ` ( A FuncCat E ) ) ) x ) = ( ( oppFunc ` ( <. D , F >. -o.F f ) ) ( ( oppCat ` ( D FuncCat F ) ) UP ( oppCat ` ( B FuncCat F ) ) ) x ) ) |
| 48 |
13 15 47
|
mpoeq123dva |
|- ( ph -> ( f e. ( A Func C ) , x e. ( A Func E ) |-> ( ( oppFunc ` ( <. C , E >. -o.F f ) ) ( ( oppCat ` ( C FuncCat E ) ) UP ( oppCat ` ( A FuncCat E ) ) ) x ) ) = ( f e. ( B Func D ) , x e. ( B Func F ) |-> ( ( oppFunc ` ( <. D , F >. -o.F f ) ) ( ( oppCat ` ( D FuncCat F ) ) UP ( oppCat ` ( B FuncCat F ) ) ) x ) ) ) |
| 49 |
|
eqid |
|- ( C FuncCat E ) = ( C FuncCat E ) |
| 50 |
|
eqid |
|- ( A FuncCat E ) = ( A FuncCat E ) |
| 51 |
|
eqid |
|- ( oppCat ` ( C FuncCat E ) ) = ( oppCat ` ( C FuncCat E ) ) |
| 52 |
|
eqid |
|- ( oppCat ` ( A FuncCat E ) ) = ( oppCat ` ( A FuncCat E ) ) |
| 53 |
49 50 7 9 11 51 52
|
ranfval |
|- ( ph -> ( <. A , C >. Ran E ) = ( f e. ( A Func C ) , x e. ( A Func E ) |-> ( ( oppFunc ` ( <. C , E >. -o.F f ) ) ( ( oppCat ` ( C FuncCat E ) ) UP ( oppCat ` ( A FuncCat E ) ) ) x ) ) ) |
| 54 |
|
eqid |
|- ( D FuncCat F ) = ( D FuncCat F ) |
| 55 |
|
eqid |
|- ( B FuncCat F ) = ( B FuncCat F ) |
| 56 |
|
eqid |
|- ( oppCat ` ( D FuncCat F ) ) = ( oppCat ` ( D FuncCat F ) ) |
| 57 |
|
eqid |
|- ( oppCat ` ( B FuncCat F ) ) = ( oppCat ` ( B FuncCat F ) ) |
| 58 |
54 55 8 10 12 56 57
|
ranfval |
|- ( ph -> ( <. B , D >. Ran F ) = ( f e. ( B Func D ) , x e. ( B Func F ) |-> ( ( oppFunc ` ( <. D , F >. -o.F f ) ) ( ( oppCat ` ( D FuncCat F ) ) UP ( oppCat ` ( B FuncCat F ) ) ) x ) ) ) |
| 59 |
48 53 58
|
3eqtr4d |
|- ( ph -> ( <. A , C >. Ran E ) = ( <. B , D >. Ran F ) ) |