| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
| 2 |
|
simp3 |
|- ( ( N e. NN /\ Rel R /\ R e. V ) -> R e. V ) |
| 3 |
|
simp1 |
|- ( ( N e. NN /\ Rel R /\ R e. V ) -> N e. NN ) |
| 4 |
|
relexpsucnnl |
|- ( ( R e. V /\ N e. NN ) -> ( R ^r ( N + 1 ) ) = ( R o. ( R ^r N ) ) ) |
| 5 |
2 3 4
|
syl2anc |
|- ( ( N e. NN /\ Rel R /\ R e. V ) -> ( R ^r ( N + 1 ) ) = ( R o. ( R ^r N ) ) ) |
| 6 |
5
|
3expib |
|- ( N e. NN -> ( ( Rel R /\ R e. V ) -> ( R ^r ( N + 1 ) ) = ( R o. ( R ^r N ) ) ) ) |
| 7 |
|
simp2 |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> Rel R ) |
| 8 |
|
relcoi1 |
|- ( Rel R -> ( R o. ( _I |` U. U. R ) ) = R ) |
| 9 |
7 8
|
syl |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( R o. ( _I |` U. U. R ) ) = R ) |
| 10 |
|
simp1 |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> N = 0 ) |
| 11 |
10
|
oveq2d |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( R ^r N ) = ( R ^r 0 ) ) |
| 12 |
|
simp3 |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> R e. V ) |
| 13 |
|
relexp0 |
|- ( ( R e. V /\ Rel R ) -> ( R ^r 0 ) = ( _I |` U. U. R ) ) |
| 14 |
12 7 13
|
syl2anc |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( R ^r 0 ) = ( _I |` U. U. R ) ) |
| 15 |
11 14
|
eqtrd |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( R ^r N ) = ( _I |` U. U. R ) ) |
| 16 |
15
|
coeq2d |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( R o. ( R ^r N ) ) = ( R o. ( _I |` U. U. R ) ) ) |
| 17 |
10
|
oveq1d |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( N + 1 ) = ( 0 + 1 ) ) |
| 18 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 19 |
17 18
|
eqtrdi |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( N + 1 ) = 1 ) |
| 20 |
19
|
oveq2d |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( R ^r ( N + 1 ) ) = ( R ^r 1 ) ) |
| 21 |
|
relexp1g |
|- ( R e. V -> ( R ^r 1 ) = R ) |
| 22 |
12 21
|
syl |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( R ^r 1 ) = R ) |
| 23 |
20 22
|
eqtrd |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( R ^r ( N + 1 ) ) = R ) |
| 24 |
9 16 23
|
3eqtr4rd |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( R ^r ( N + 1 ) ) = ( R o. ( R ^r N ) ) ) |
| 25 |
24
|
3expib |
|- ( N = 0 -> ( ( Rel R /\ R e. V ) -> ( R ^r ( N + 1 ) ) = ( R o. ( R ^r N ) ) ) ) |
| 26 |
6 25
|
jaoi |
|- ( ( N e. NN \/ N = 0 ) -> ( ( Rel R /\ R e. V ) -> ( R ^r ( N + 1 ) ) = ( R o. ( R ^r N ) ) ) ) |
| 27 |
1 26
|
sylbi |
|- ( N e. NN0 -> ( ( Rel R /\ R e. V ) -> ( R ^r ( N + 1 ) ) = ( R o. ( R ^r N ) ) ) ) |
| 28 |
27
|
3impib |
|- ( ( N e. NN0 /\ Rel R /\ R e. V ) -> ( R ^r ( N + 1 ) ) = ( R o. ( R ^r N ) ) ) |
| 29 |
28
|
3com13 |
|- ( ( R e. V /\ Rel R /\ N e. NN0 ) -> ( R ^r ( N + 1 ) ) = ( R o. ( R ^r N ) ) ) |