Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
2 |
|
simp3 |
|- ( ( N e. NN /\ Rel R /\ R e. V ) -> R e. V ) |
3 |
|
simp1 |
|- ( ( N e. NN /\ Rel R /\ R e. V ) -> N e. NN ) |
4 |
|
relexpsucnnr |
|- ( ( R e. V /\ N e. NN ) -> ( R ^r ( N + 1 ) ) = ( ( R ^r N ) o. R ) ) |
5 |
2 3 4
|
syl2anc |
|- ( ( N e. NN /\ Rel R /\ R e. V ) -> ( R ^r ( N + 1 ) ) = ( ( R ^r N ) o. R ) ) |
6 |
5
|
3expib |
|- ( N e. NN -> ( ( Rel R /\ R e. V ) -> ( R ^r ( N + 1 ) ) = ( ( R ^r N ) o. R ) ) ) |
7 |
|
simp2 |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> Rel R ) |
8 |
|
relcoi2 |
|- ( Rel R -> ( ( _I |` U. U. R ) o. R ) = R ) |
9 |
8
|
eqcomd |
|- ( Rel R -> R = ( ( _I |` U. U. R ) o. R ) ) |
10 |
7 9
|
syl |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> R = ( ( _I |` U. U. R ) o. R ) ) |
11 |
|
simp1 |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> N = 0 ) |
12 |
11
|
oveq1d |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( N + 1 ) = ( 0 + 1 ) ) |
13 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
14 |
12 13
|
eqtrdi |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( N + 1 ) = 1 ) |
15 |
14
|
oveq2d |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( R ^r ( N + 1 ) ) = ( R ^r 1 ) ) |
16 |
|
simp3 |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> R e. V ) |
17 |
|
relexp1g |
|- ( R e. V -> ( R ^r 1 ) = R ) |
18 |
16 17
|
syl |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( R ^r 1 ) = R ) |
19 |
15 18
|
eqtrd |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( R ^r ( N + 1 ) ) = R ) |
20 |
11
|
oveq2d |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( R ^r N ) = ( R ^r 0 ) ) |
21 |
|
relexp0 |
|- ( ( R e. V /\ Rel R ) -> ( R ^r 0 ) = ( _I |` U. U. R ) ) |
22 |
16 7 21
|
syl2anc |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( R ^r 0 ) = ( _I |` U. U. R ) ) |
23 |
20 22
|
eqtrd |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( R ^r N ) = ( _I |` U. U. R ) ) |
24 |
23
|
coeq1d |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( ( R ^r N ) o. R ) = ( ( _I |` U. U. R ) o. R ) ) |
25 |
10 19 24
|
3eqtr4d |
|- ( ( N = 0 /\ Rel R /\ R e. V ) -> ( R ^r ( N + 1 ) ) = ( ( R ^r N ) o. R ) ) |
26 |
25
|
3expib |
|- ( N = 0 -> ( ( Rel R /\ R e. V ) -> ( R ^r ( N + 1 ) ) = ( ( R ^r N ) o. R ) ) ) |
27 |
6 26
|
jaoi |
|- ( ( N e. NN \/ N = 0 ) -> ( ( Rel R /\ R e. V ) -> ( R ^r ( N + 1 ) ) = ( ( R ^r N ) o. R ) ) ) |
28 |
1 27
|
sylbi |
|- ( N e. NN0 -> ( ( Rel R /\ R e. V ) -> ( R ^r ( N + 1 ) ) = ( ( R ^r N ) o. R ) ) ) |
29 |
28
|
3impib |
|- ( ( N e. NN0 /\ Rel R /\ R e. V ) -> ( R ^r ( N + 1 ) ) = ( ( R ^r N ) o. R ) ) |
30 |
29
|
3com13 |
|- ( ( R e. V /\ Rel R /\ N e. NN0 ) -> ( R ^r ( N + 1 ) ) = ( ( R ^r N ) o. R ) ) |