Metamath Proof Explorer


Theorem relexpsucr

Description: A reduction for relation exponentiation to the right. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexpsucr RVRelRN0RrN+1=RrNR

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 simp3 NRelRRVRV
3 simp1 NRelRRVN
4 relexpsucnnr RVNRrN+1=RrNR
5 2 3 4 syl2anc NRelRRVRrN+1=RrNR
6 5 3expib NRelRRVRrN+1=RrNR
7 simp2 N=0RelRRVRelR
8 relcoi2 RelRIRR=R
9 8 eqcomd RelRR=IRR
10 7 9 syl N=0RelRRVR=IRR
11 simp1 N=0RelRRVN=0
12 11 oveq1d N=0RelRRVN+1=0+1
13 0p1e1 0+1=1
14 12 13 eqtrdi N=0RelRRVN+1=1
15 14 oveq2d N=0RelRRVRrN+1=Rr1
16 simp3 N=0RelRRVRV
17 relexp1g RVRr1=R
18 16 17 syl N=0RelRRVRr1=R
19 15 18 eqtrd N=0RelRRVRrN+1=R
20 11 oveq2d N=0RelRRVRrN=Rr0
21 relexp0 RVRelRRr0=IR
22 16 7 21 syl2anc N=0RelRRVRr0=IR
23 20 22 eqtrd N=0RelRRVRrN=IR
24 23 coeq1d N=0RelRRVRrNR=IRR
25 10 19 24 3eqtr4d N=0RelRRVRrN+1=RrNR
26 25 3expib N=0RelRRVRrN+1=RrNR
27 6 26 jaoi NN=0RelRRVRrN+1=RrNR
28 1 27 sylbi N0RelRRVRrN+1=RrNR
29 28 3impib N0RelRRVRrN+1=RrNR
30 29 3com13 RVRelRN0RrN+1=RrNR