Metamath Proof Explorer


Theorem relexpsucr

Description: A reduction for relation exponentiation to the right. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexpsucr R V Rel R N 0 R r N + 1 = R r N R

Proof

Step Hyp Ref Expression
1 elnn0 N 0 N N = 0
2 simp3 N Rel R R V R V
3 simp1 N Rel R R V N
4 relexpsucnnr R V N R r N + 1 = R r N R
5 2 3 4 syl2anc N Rel R R V R r N + 1 = R r N R
6 5 3expib N Rel R R V R r N + 1 = R r N R
7 simp2 N = 0 Rel R R V Rel R
8 relcoi2 Rel R I R R = R
9 8 eqcomd Rel R R = I R R
10 7 9 syl N = 0 Rel R R V R = I R R
11 simp1 N = 0 Rel R R V N = 0
12 11 oveq1d N = 0 Rel R R V N + 1 = 0 + 1
13 0p1e1 0 + 1 = 1
14 12 13 eqtrdi N = 0 Rel R R V N + 1 = 1
15 14 oveq2d N = 0 Rel R R V R r N + 1 = R r 1
16 simp3 N = 0 Rel R R V R V
17 relexp1g R V R r 1 = R
18 16 17 syl N = 0 Rel R R V R r 1 = R
19 15 18 eqtrd N = 0 Rel R R V R r N + 1 = R
20 11 oveq2d N = 0 Rel R R V R r N = R r 0
21 relexp0 R V Rel R R r 0 = I R
22 16 7 21 syl2anc N = 0 Rel R R V R r 0 = I R
23 20 22 eqtrd N = 0 Rel R R V R r N = I R
24 23 coeq1d N = 0 Rel R R V R r N R = I R R
25 10 19 24 3eqtr4d N = 0 Rel R R V R r N + 1 = R r N R
26 25 3expib N = 0 Rel R R V R r N + 1 = R r N R
27 6 26 jaoi N N = 0 Rel R R V R r N + 1 = R r N R
28 1 27 sylbi N 0 Rel R R V R r N + 1 = R r N R
29 28 3impib N 0 Rel R R V R r N + 1 = R r N R
30 29 3com13 R V Rel R N 0 R r N + 1 = R r N R