Description: A reduction for relation exponentiation to the right. (Contributed by RP, 23-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | relexpsucr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 | |
|
2 | simp3 | |
|
3 | simp1 | |
|
4 | relexpsucnnr | |
|
5 | 2 3 4 | syl2anc | |
6 | 5 | 3expib | |
7 | simp2 | |
|
8 | relcoi2 | |
|
9 | 8 | eqcomd | |
10 | 7 9 | syl | |
11 | simp1 | |
|
12 | 11 | oveq1d | |
13 | 0p1e1 | |
|
14 | 12 13 | eqtrdi | |
15 | 14 | oveq2d | |
16 | simp3 | |
|
17 | relexp1g | |
|
18 | 16 17 | syl | |
19 | 15 18 | eqtrd | |
20 | 11 | oveq2d | |
21 | relexp0 | |
|
22 | 16 7 21 | syl2anc | |
23 | 20 22 | eqtrd | |
24 | 23 | coeq1d | |
25 | 10 19 24 | 3eqtr4d | |
26 | 25 | 3expib | |
27 | 6 26 | jaoi | |
28 | 1 27 | sylbi | |
29 | 28 | 3impib | |
30 | 29 | 3com13 | |