Metamath Proof Explorer


Theorem relexpsucrd

Description: A reduction for relation exponentiation to the right. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses relexpsucrd.1 φRelR
relexpsucrd.2 φN0
Assertion relexpsucrd φRrN+1=RrNR

Proof

Step Hyp Ref Expression
1 relexpsucrd.1 φRelR
2 relexpsucrd.2 φN0
3 simpr φRVRV
4 1 adantr φRVRelR
5 2 adantr φRVN0
6 relexpsucr RVRelRN0RrN+1=RrNR
7 3 4 5 6 syl3anc φRVRrN+1=RrNR
8 7 ex φRVRrN+1=RrNR
9 reldmrelexp Reldomr
10 9 ovprc1 ¬RVRrN+1=
11 9 ovprc1 ¬RVRrN=
12 11 coeq1d ¬RVRrNR=R
13 co01 R=
14 12 13 eqtr2di ¬RV=RrNR
15 10 14 eqtrd ¬RVRrN+1=RrNR
16 8 15 pm2.61d1 φRrN+1=RrNR