Metamath Proof Explorer


Theorem relexpsucrd

Description: A reduction for relation exponentiation to the right. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses relexpsucrd.1 φ Rel R
relexpsucrd.2 φ N 0
Assertion relexpsucrd φ R r N + 1 = R r N R

Proof

Step Hyp Ref Expression
1 relexpsucrd.1 φ Rel R
2 relexpsucrd.2 φ N 0
3 simpr φ R V R V
4 1 adantr φ R V Rel R
5 2 adantr φ R V N 0
6 relexpsucr R V Rel R N 0 R r N + 1 = R r N R
7 3 4 5 6 syl3anc φ R V R r N + 1 = R r N R
8 7 ex φ R V R r N + 1 = R r N R
9 reldmrelexp Rel dom r
10 9 ovprc1 ¬ R V R r N + 1 =
11 9 ovprc1 ¬ R V R r N =
12 11 coeq1d ¬ R V R r N R = R
13 co01 R =
14 12 13 eqtr2di ¬ R V = R r N R
15 10 14 eqtrd ¬ R V R r N + 1 = R r N R
16 8 15 pm2.61d1 φ R r N + 1 = R r N R