| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( x = 1 -> ( ( A X. B ) ^r x ) = ( ( A X. B ) ^r 1 ) ) |
| 2 |
1
|
eqeq1d |
|- ( x = 1 -> ( ( ( A X. B ) ^r x ) = ( A X. B ) <-> ( ( A X. B ) ^r 1 ) = ( A X. B ) ) ) |
| 3 |
2
|
imbi2d |
|- ( x = 1 -> ( ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( A X. B ) ^r x ) = ( A X. B ) ) <-> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( A X. B ) ^r 1 ) = ( A X. B ) ) ) ) |
| 4 |
|
oveq2 |
|- ( x = y -> ( ( A X. B ) ^r x ) = ( ( A X. B ) ^r y ) ) |
| 5 |
4
|
eqeq1d |
|- ( x = y -> ( ( ( A X. B ) ^r x ) = ( A X. B ) <-> ( ( A X. B ) ^r y ) = ( A X. B ) ) ) |
| 6 |
5
|
imbi2d |
|- ( x = y -> ( ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( A X. B ) ^r x ) = ( A X. B ) ) <-> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( A X. B ) ^r y ) = ( A X. B ) ) ) ) |
| 7 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( ( A X. B ) ^r x ) = ( ( A X. B ) ^r ( y + 1 ) ) ) |
| 8 |
7
|
eqeq1d |
|- ( x = ( y + 1 ) -> ( ( ( A X. B ) ^r x ) = ( A X. B ) <-> ( ( A X. B ) ^r ( y + 1 ) ) = ( A X. B ) ) ) |
| 9 |
8
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( A X. B ) ^r x ) = ( A X. B ) ) <-> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( A X. B ) ^r ( y + 1 ) ) = ( A X. B ) ) ) ) |
| 10 |
|
oveq2 |
|- ( x = N -> ( ( A X. B ) ^r x ) = ( ( A X. B ) ^r N ) ) |
| 11 |
10
|
eqeq1d |
|- ( x = N -> ( ( ( A X. B ) ^r x ) = ( A X. B ) <-> ( ( A X. B ) ^r N ) = ( A X. B ) ) ) |
| 12 |
11
|
imbi2d |
|- ( x = N -> ( ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( A X. B ) ^r x ) = ( A X. B ) ) <-> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( A X. B ) ^r N ) = ( A X. B ) ) ) ) |
| 13 |
|
3simpa |
|- ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( A e. U /\ B e. V ) ) |
| 14 |
|
xpexg |
|- ( ( A e. U /\ B e. V ) -> ( A X. B ) e. _V ) |
| 15 |
|
relexp1g |
|- ( ( A X. B ) e. _V -> ( ( A X. B ) ^r 1 ) = ( A X. B ) ) |
| 16 |
13 14 15
|
3syl |
|- ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( A X. B ) ^r 1 ) = ( A X. B ) ) |
| 17 |
|
simp2 |
|- ( ( y e. NN /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) /\ ( ( A X. B ) ^r y ) = ( A X. B ) ) -> ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) |
| 18 |
17 13 14
|
3syl |
|- ( ( y e. NN /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) /\ ( ( A X. B ) ^r y ) = ( A X. B ) ) -> ( A X. B ) e. _V ) |
| 19 |
|
simp1 |
|- ( ( y e. NN /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) /\ ( ( A X. B ) ^r y ) = ( A X. B ) ) -> y e. NN ) |
| 20 |
|
relexpsucnnr |
|- ( ( ( A X. B ) e. _V /\ y e. NN ) -> ( ( A X. B ) ^r ( y + 1 ) ) = ( ( ( A X. B ) ^r y ) o. ( A X. B ) ) ) |
| 21 |
18 19 20
|
syl2anc |
|- ( ( y e. NN /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) /\ ( ( A X. B ) ^r y ) = ( A X. B ) ) -> ( ( A X. B ) ^r ( y + 1 ) ) = ( ( ( A X. B ) ^r y ) o. ( A X. B ) ) ) |
| 22 |
|
simp3 |
|- ( ( y e. NN /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) /\ ( ( A X. B ) ^r y ) = ( A X. B ) ) -> ( ( A X. B ) ^r y ) = ( A X. B ) ) |
| 23 |
22
|
coeq1d |
|- ( ( y e. NN /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) /\ ( ( A X. B ) ^r y ) = ( A X. B ) ) -> ( ( ( A X. B ) ^r y ) o. ( A X. B ) ) = ( ( A X. B ) o. ( A X. B ) ) ) |
| 24 |
|
simp23 |
|- ( ( y e. NN /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) /\ ( ( A X. B ) ^r y ) = ( A X. B ) ) -> ( A i^i B ) =/= (/) ) |
| 25 |
24
|
xpcoidgend |
|- ( ( y e. NN /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) /\ ( ( A X. B ) ^r y ) = ( A X. B ) ) -> ( ( A X. B ) o. ( A X. B ) ) = ( A X. B ) ) |
| 26 |
21 23 25
|
3eqtrd |
|- ( ( y e. NN /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) /\ ( ( A X. B ) ^r y ) = ( A X. B ) ) -> ( ( A X. B ) ^r ( y + 1 ) ) = ( A X. B ) ) |
| 27 |
26
|
3exp |
|- ( y e. NN -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r y ) = ( A X. B ) -> ( ( A X. B ) ^r ( y + 1 ) ) = ( A X. B ) ) ) ) |
| 28 |
27
|
a2d |
|- ( y e. NN -> ( ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( A X. B ) ^r y ) = ( A X. B ) ) -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( A X. B ) ^r ( y + 1 ) ) = ( A X. B ) ) ) ) |
| 29 |
3 6 9 12 16 28
|
nnind |
|- ( N e. NN -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( A X. B ) ^r N ) = ( A X. B ) ) ) |