Metamath Proof Explorer


Theorem relexpxpnnidm

Description: Any positive power of a Cartesian product of non-disjoint sets is itself. (Contributed by RP, 13-Jun-2020)

Ref Expression
Assertion relexpxpnnidm N A U B V A B A × B r N = A × B

Proof

Step Hyp Ref Expression
1 oveq2 x = 1 A × B r x = A × B r 1
2 1 eqeq1d x = 1 A × B r x = A × B A × B r 1 = A × B
3 2 imbi2d x = 1 A U B V A B A × B r x = A × B A U B V A B A × B r 1 = A × B
4 oveq2 x = y A × B r x = A × B r y
5 4 eqeq1d x = y A × B r x = A × B A × B r y = A × B
6 5 imbi2d x = y A U B V A B A × B r x = A × B A U B V A B A × B r y = A × B
7 oveq2 x = y + 1 A × B r x = A × B r y + 1
8 7 eqeq1d x = y + 1 A × B r x = A × B A × B r y + 1 = A × B
9 8 imbi2d x = y + 1 A U B V A B A × B r x = A × B A U B V A B A × B r y + 1 = A × B
10 oveq2 x = N A × B r x = A × B r N
11 10 eqeq1d x = N A × B r x = A × B A × B r N = A × B
12 11 imbi2d x = N A U B V A B A × B r x = A × B A U B V A B A × B r N = A × B
13 3simpa A U B V A B A U B V
14 xpexg A U B V A × B V
15 relexp1g A × B V A × B r 1 = A × B
16 13 14 15 3syl A U B V A B A × B r 1 = A × B
17 simp2 y A U B V A B A × B r y = A × B A U B V A B
18 17 13 14 3syl y A U B V A B A × B r y = A × B A × B V
19 simp1 y A U B V A B A × B r y = A × B y
20 relexpsucnnr A × B V y A × B r y + 1 = A × B r y A × B
21 18 19 20 syl2anc y A U B V A B A × B r y = A × B A × B r y + 1 = A × B r y A × B
22 simp3 y A U B V A B A × B r y = A × B A × B r y = A × B
23 22 coeq1d y A U B V A B A × B r y = A × B A × B r y A × B = A × B A × B
24 simp23 y A U B V A B A × B r y = A × B A B
25 24 xpcoidgend y A U B V A B A × B r y = A × B A × B A × B = A × B
26 21 23 25 3eqtrd y A U B V A B A × B r y = A × B A × B r y + 1 = A × B
27 26 3exp y A U B V A B A × B r y = A × B A × B r y + 1 = A × B
28 27 a2d y A U B V A B A × B r y = A × B A U B V A B A × B r y + 1 = A × B
29 3 6 9 12 16 28 nnind N A U B V A B A × B r N = A × B