| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id |  |-  ( Rel A -> Rel A ) | 
						
							| 2 |  | 19.8a |  |-  ( <. x , y >. e. A -> E. y <. x , y >. e. A ) | 
						
							| 3 |  | 19.8a |  |-  ( <. x , y >. e. A -> E. x <. x , y >. e. A ) | 
						
							| 4 |  | opelxp |  |-  ( <. x , y >. e. ( dom A X. ran A ) <-> ( x e. dom A /\ y e. ran A ) ) | 
						
							| 5 |  | vex |  |-  x e. _V | 
						
							| 6 | 5 | eldm2 |  |-  ( x e. dom A <-> E. y <. x , y >. e. A ) | 
						
							| 7 |  | vex |  |-  y e. _V | 
						
							| 8 | 7 | elrn2 |  |-  ( y e. ran A <-> E. x <. x , y >. e. A ) | 
						
							| 9 | 6 8 | anbi12i |  |-  ( ( x e. dom A /\ y e. ran A ) <-> ( E. y <. x , y >. e. A /\ E. x <. x , y >. e. A ) ) | 
						
							| 10 | 4 9 | bitri |  |-  ( <. x , y >. e. ( dom A X. ran A ) <-> ( E. y <. x , y >. e. A /\ E. x <. x , y >. e. A ) ) | 
						
							| 11 | 2 3 10 | sylanbrc |  |-  ( <. x , y >. e. A -> <. x , y >. e. ( dom A X. ran A ) ) | 
						
							| 12 | 11 | a1i |  |-  ( Rel A -> ( <. x , y >. e. A -> <. x , y >. e. ( dom A X. ran A ) ) ) | 
						
							| 13 | 1 12 | relssdv |  |-  ( Rel A -> A C_ ( dom A X. ran A ) ) |