Metamath Proof Explorer


Theorem resf2nd

Description: Value of the functor restriction operator on morphisms. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses resf1st.f
|- ( ph -> F e. V )
resf1st.h
|- ( ph -> H e. W )
resf1st.s
|- ( ph -> H Fn ( S X. S ) )
resf2nd.x
|- ( ph -> X e. S )
resf2nd.y
|- ( ph -> Y e. S )
Assertion resf2nd
|- ( ph -> ( X ( 2nd ` ( F |`f H ) ) Y ) = ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) )

Proof

Step Hyp Ref Expression
1 resf1st.f
 |-  ( ph -> F e. V )
2 resf1st.h
 |-  ( ph -> H e. W )
3 resf1st.s
 |-  ( ph -> H Fn ( S X. S ) )
4 resf2nd.x
 |-  ( ph -> X e. S )
5 resf2nd.y
 |-  ( ph -> Y e. S )
6 df-ov
 |-  ( X ( 2nd ` ( F |`f H ) ) Y ) = ( ( 2nd ` ( F |`f H ) ) ` <. X , Y >. )
7 1 2 resfval
 |-  ( ph -> ( F |`f H ) = <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. )
8 7 fveq2d
 |-  ( ph -> ( 2nd ` ( F |`f H ) ) = ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) )
9 fvex
 |-  ( 1st ` F ) e. _V
10 9 resex
 |-  ( ( 1st ` F ) |` dom dom H ) e. _V
11 dmexg
 |-  ( H e. W -> dom H e. _V )
12 mptexg
 |-  ( dom H e. _V -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V )
13 2 11 12 3syl
 |-  ( ph -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V )
14 op2ndg
 |-  ( ( ( ( 1st ` F ) |` dom dom H ) e. _V /\ ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) -> ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) )
15 10 13 14 sylancr
 |-  ( ph -> ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) )
16 8 15 eqtrd
 |-  ( ph -> ( 2nd ` ( F |`f H ) ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) )
17 simpr
 |-  ( ( ph /\ z = <. X , Y >. ) -> z = <. X , Y >. )
18 17 fveq2d
 |-  ( ( ph /\ z = <. X , Y >. ) -> ( ( 2nd ` F ) ` z ) = ( ( 2nd ` F ) ` <. X , Y >. ) )
19 df-ov
 |-  ( X ( 2nd ` F ) Y ) = ( ( 2nd ` F ) ` <. X , Y >. )
20 18 19 eqtr4di
 |-  ( ( ph /\ z = <. X , Y >. ) -> ( ( 2nd ` F ) ` z ) = ( X ( 2nd ` F ) Y ) )
21 17 fveq2d
 |-  ( ( ph /\ z = <. X , Y >. ) -> ( H ` z ) = ( H ` <. X , Y >. ) )
22 df-ov
 |-  ( X H Y ) = ( H ` <. X , Y >. )
23 21 22 eqtr4di
 |-  ( ( ph /\ z = <. X , Y >. ) -> ( H ` z ) = ( X H Y ) )
24 20 23 reseq12d
 |-  ( ( ph /\ z = <. X , Y >. ) -> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) = ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) )
25 4 5 opelxpd
 |-  ( ph -> <. X , Y >. e. ( S X. S ) )
26 3 fndmd
 |-  ( ph -> dom H = ( S X. S ) )
27 25 26 eleqtrrd
 |-  ( ph -> <. X , Y >. e. dom H )
28 ovex
 |-  ( X ( 2nd ` F ) Y ) e. _V
29 28 resex
 |-  ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) e. _V
30 29 a1i
 |-  ( ph -> ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) e. _V )
31 16 24 27 30 fvmptd
 |-  ( ph -> ( ( 2nd ` ( F |`f H ) ) ` <. X , Y >. ) = ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) )
32 6 31 syl5eq
 |-  ( ph -> ( X ( 2nd ` ( F |`f H ) ) Y ) = ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) )