Metamath Proof Explorer


Theorem resf2nd

Description: Value of the functor restriction operator on morphisms. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses resf1st.f φ F V
resf1st.h φ H W
resf1st.s φ H Fn S × S
resf2nd.x φ X S
resf2nd.y φ Y S
Assertion resf2nd φ X 2 nd F f H Y = X 2 nd F Y X H Y

Proof

Step Hyp Ref Expression
1 resf1st.f φ F V
2 resf1st.h φ H W
3 resf1st.s φ H Fn S × S
4 resf2nd.x φ X S
5 resf2nd.y φ Y S
6 df-ov X 2 nd F f H Y = 2 nd F f H X Y
7 1 2 resfval φ F f H = 1 st F dom dom H z dom H 2 nd F z H z
8 7 fveq2d φ 2 nd F f H = 2 nd 1 st F dom dom H z dom H 2 nd F z H z
9 fvex 1 st F V
10 9 resex 1 st F dom dom H V
11 dmexg H W dom H V
12 mptexg dom H V z dom H 2 nd F z H z V
13 2 11 12 3syl φ z dom H 2 nd F z H z V
14 op2ndg 1 st F dom dom H V z dom H 2 nd F z H z V 2 nd 1 st F dom dom H z dom H 2 nd F z H z = z dom H 2 nd F z H z
15 10 13 14 sylancr φ 2 nd 1 st F dom dom H z dom H 2 nd F z H z = z dom H 2 nd F z H z
16 8 15 eqtrd φ 2 nd F f H = z dom H 2 nd F z H z
17 simpr φ z = X Y z = X Y
18 17 fveq2d φ z = X Y 2 nd F z = 2 nd F X Y
19 df-ov X 2 nd F Y = 2 nd F X Y
20 18 19 eqtr4di φ z = X Y 2 nd F z = X 2 nd F Y
21 17 fveq2d φ z = X Y H z = H X Y
22 df-ov X H Y = H X Y
23 21 22 eqtr4di φ z = X Y H z = X H Y
24 20 23 reseq12d φ z = X Y 2 nd F z H z = X 2 nd F Y X H Y
25 4 5 opelxpd φ X Y S × S
26 3 fndmd φ dom H = S × S
27 25 26 eleqtrrd φ X Y dom H
28 ovex X 2 nd F Y V
29 28 resex X 2 nd F Y X H Y V
30 29 a1i φ X 2 nd F Y X H Y V
31 16 24 27 30 fvmptd φ 2 nd F f H X Y = X 2 nd F Y X H Y
32 6 31 syl5eq φ X 2 nd F f H Y = X 2 nd F Y X H Y