Step |
Hyp |
Ref |
Expression |
1 |
|
ringccatALTV.c |
|- C = ( RingCatALTV ` U ) |
2 |
|
ringcidALTV.b |
|- B = ( Base ` C ) |
3 |
|
ringcidALTV.o |
|- .1. = ( Id ` C ) |
4 |
|
ringcidALTV.u |
|- ( ph -> U e. V ) |
5 |
|
ringcidALTV.x |
|- ( ph -> X e. B ) |
6 |
|
ringcidALTV.s |
|- S = ( Base ` X ) |
7 |
1 2
|
ringccatidALTV |
|- ( U e. V -> ( C e. Cat /\ ( Id ` C ) = ( x e. B |-> ( _I |` ( Base ` x ) ) ) ) ) |
8 |
4 7
|
syl |
|- ( ph -> ( C e. Cat /\ ( Id ` C ) = ( x e. B |-> ( _I |` ( Base ` x ) ) ) ) ) |
9 |
8
|
simprd |
|- ( ph -> ( Id ` C ) = ( x e. B |-> ( _I |` ( Base ` x ) ) ) ) |
10 |
3 9
|
eqtrid |
|- ( ph -> .1. = ( x e. B |-> ( _I |` ( Base ` x ) ) ) ) |
11 |
|
fveq2 |
|- ( x = X -> ( Base ` x ) = ( Base ` X ) ) |
12 |
11
|
adantl |
|- ( ( ph /\ x = X ) -> ( Base ` x ) = ( Base ` X ) ) |
13 |
12
|
reseq2d |
|- ( ( ph /\ x = X ) -> ( _I |` ( Base ` x ) ) = ( _I |` ( Base ` X ) ) ) |
14 |
|
fvex |
|- ( Base ` X ) e. _V |
15 |
|
resiexg |
|- ( ( Base ` X ) e. _V -> ( _I |` ( Base ` X ) ) e. _V ) |
16 |
14 15
|
mp1i |
|- ( ph -> ( _I |` ( Base ` X ) ) e. _V ) |
17 |
10 13 5 16
|
fvmptd |
|- ( ph -> ( .1. ` X ) = ( _I |` ( Base ` X ) ) ) |
18 |
6
|
reseq2i |
|- ( _I |` S ) = ( _I |` ( Base ` X ) ) |
19 |
17 18
|
eqtr4di |
|- ( ph -> ( .1. ` X ) = ( _I |` S ) ) |