| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringccatALTV.c |
|- C = ( RingCatALTV ` U ) |
| 2 |
|
ringcidALTV.b |
|- B = ( Base ` C ) |
| 3 |
|
ringcidALTV.o |
|- .1. = ( Id ` C ) |
| 4 |
|
ringcidALTV.u |
|- ( ph -> U e. V ) |
| 5 |
|
ringcidALTV.x |
|- ( ph -> X e. B ) |
| 6 |
|
ringcidALTV.s |
|- S = ( Base ` X ) |
| 7 |
1 2
|
ringccatidALTV |
|- ( U e. V -> ( C e. Cat /\ ( Id ` C ) = ( x e. B |-> ( _I |` ( Base ` x ) ) ) ) ) |
| 8 |
4 7
|
syl |
|- ( ph -> ( C e. Cat /\ ( Id ` C ) = ( x e. B |-> ( _I |` ( Base ` x ) ) ) ) ) |
| 9 |
8
|
simprd |
|- ( ph -> ( Id ` C ) = ( x e. B |-> ( _I |` ( Base ` x ) ) ) ) |
| 10 |
3 9
|
eqtrid |
|- ( ph -> .1. = ( x e. B |-> ( _I |` ( Base ` x ) ) ) ) |
| 11 |
|
fveq2 |
|- ( x = X -> ( Base ` x ) = ( Base ` X ) ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ x = X ) -> ( Base ` x ) = ( Base ` X ) ) |
| 13 |
12
|
reseq2d |
|- ( ( ph /\ x = X ) -> ( _I |` ( Base ` x ) ) = ( _I |` ( Base ` X ) ) ) |
| 14 |
|
fvex |
|- ( Base ` X ) e. _V |
| 15 |
|
resiexg |
|- ( ( Base ` X ) e. _V -> ( _I |` ( Base ` X ) ) e. _V ) |
| 16 |
14 15
|
mp1i |
|- ( ph -> ( _I |` ( Base ` X ) ) e. _V ) |
| 17 |
10 13 5 16
|
fvmptd |
|- ( ph -> ( .1. ` X ) = ( _I |` ( Base ` X ) ) ) |
| 18 |
6
|
reseq2i |
|- ( _I |` S ) = ( _I |` ( Base ` X ) ) |
| 19 |
17 18
|
eqtr4di |
|- ( ph -> ( .1. ` X ) = ( _I |` S ) ) |