| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringm1expp1.1 |
|- .1. = ( 1r ` R ) |
| 2 |
|
ringm1expp1.2 |
|- N = ( invg ` R ) |
| 3 |
|
ringm1expp1.3 |
|- .^ = ( .g ` ( mulGrp ` R ) ) |
| 4 |
|
ringm1expp1.4 |
|- ( ph -> R e. Ring ) |
| 5 |
|
ringm1expp1.5 |
|- ( ph -> K e. NN0 ) |
| 6 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 7 |
6
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 8 |
4 7
|
syl |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 10 |
4
|
ringgrpd |
|- ( ph -> R e. Grp ) |
| 11 |
9 1 4
|
ringidcld |
|- ( ph -> .1. e. ( Base ` R ) ) |
| 12 |
9 2 10 11
|
grpinvcld |
|- ( ph -> ( N ` .1. ) e. ( Base ` R ) ) |
| 13 |
6 9
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 14 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 15 |
6 14
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 16 |
13 3 15
|
mulgnn0p1 |
|- ( ( ( mulGrp ` R ) e. Mnd /\ K e. NN0 /\ ( N ` .1. ) e. ( Base ` R ) ) -> ( ( K + 1 ) .^ ( N ` .1. ) ) = ( ( K .^ ( N ` .1. ) ) ( .r ` R ) ( N ` .1. ) ) ) |
| 17 |
8 5 12 16
|
syl3anc |
|- ( ph -> ( ( K + 1 ) .^ ( N ` .1. ) ) = ( ( K .^ ( N ` .1. ) ) ( .r ` R ) ( N ` .1. ) ) ) |
| 18 |
13 3 8 5 12
|
mulgnn0cld |
|- ( ph -> ( K .^ ( N ` .1. ) ) e. ( Base ` R ) ) |
| 19 |
9 14 1 2 4 18
|
ringnegr |
|- ( ph -> ( ( K .^ ( N ` .1. ) ) ( .r ` R ) ( N ` .1. ) ) = ( N ` ( K .^ ( N ` .1. ) ) ) ) |
| 20 |
17 19
|
eqtrd |
|- ( ph -> ( ( K + 1 ) .^ ( N ` .1. ) ) = ( N ` ( K .^ ( N ` .1. ) ) ) ) |