Metamath Proof Explorer


Theorem ringm1expp1

Description: Ring exponentiation of minus one: Adding one to the exponent is the same as taking the additive inverse. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses ringm1expp1.1 1 ˙ = 1 R
ringm1expp1.2 N = inv g R
ringm1expp1.3 × ˙ = mulGrp R
ringm1expp1.4 φ R Ring
ringm1expp1.5 φ K 0
Assertion ringm1expp1 φ K + 1 × ˙ N 1 ˙ = N K × ˙ N 1 ˙

Proof

Step Hyp Ref Expression
1 ringm1expp1.1 1 ˙ = 1 R
2 ringm1expp1.2 N = inv g R
3 ringm1expp1.3 × ˙ = mulGrp R
4 ringm1expp1.4 φ R Ring
5 ringm1expp1.5 φ K 0
6 eqid mulGrp R = mulGrp R
7 6 ringmgp R Ring mulGrp R Mnd
8 4 7 syl φ mulGrp R Mnd
9 eqid Base R = Base R
10 4 ringgrpd φ R Grp
11 9 1 4 ringidcld φ 1 ˙ Base R
12 9 2 10 11 grpinvcld φ N 1 ˙ Base R
13 6 9 mgpbas Base R = Base mulGrp R
14 eqid R = R
15 6 14 mgpplusg R = + mulGrp R
16 13 3 15 mulgnn0p1 mulGrp R Mnd K 0 N 1 ˙ Base R K + 1 × ˙ N 1 ˙ = K × ˙ N 1 ˙ R N 1 ˙
17 8 5 12 16 syl3anc φ K + 1 × ˙ N 1 ˙ = K × ˙ N 1 ˙ R N 1 ˙
18 13 3 8 5 12 mulgnn0cld φ K × ˙ N 1 ˙ Base R
19 9 14 1 2 4 18 ringnegr φ K × ˙ N 1 ˙ R N 1 ˙ = N K × ˙ N 1 ˙
20 17 19 eqtrd φ K + 1 × ˙ N 1 ˙ = N K × ˙ N 1 ˙